Открыть список
Как стать автором
Обновить
  • по релевантности
  • по времени
  • по рейтингу

Поиск по регулярным выражениям с помощью суффиксного массива

Блог компании Wunder FundПрограммированиеАлгоритмы
Перевод
image

Еще в январе 2012 Расс Кокс опубликовал замечательный блог-пост, объясняющий работу Google Code Search с помощью триграммного индекса.

К этому времени уже вышли первые версии моей собственной системы поиска по исходному коду под названием livegrep, с другим метод индексации; я писал эту систему независимо от Google, с помощью нескольких друзей. В этой статье я хотел бы представить немного запоздалое объяснение механизма ее работы.
Читать дальше →
Всего голосов 21: ↑20 и ↓1 +19
Просмотры9.3K
Комментарии 1

Библиотека Google Benchmark

Блог компании Wunder FundВысокая производительностьПрограммированиеC++
Перевод


Не так давно я писал о C++ библиотеках для микробенчмаркинга. Я рассказал о трех библиотеках: Nonius, Hayai и Celero. Но в действительности я хотел поговорить о четвертой. Мой Windows тогда не поддерживал Google Benchmark library, так что я не мог ее протестировать. К счастью, из комментариев к прошлому посту я узнал, что теперь библиотека доступна в Visual Studio!

Давайте посмотрим, как можно ее использовать.
Читать дальше →
Всего голосов 12: ↑12 и ↓0 +12
Просмотры12.4K
Комментарии 0

Алгоритм Джонкера-Волгенанта + t-SNE = супер-сила

Блог компании Wunder FundАлгоритмыМашинное обучение
Перевод
До:



После:



Заинтригованы? Но обо всем по порядку.

t-SNE


t-SNE — это очень популярный алгоритм, который позволяет снижать размерность ваших данных, чтобы их было проще визуализировать. Этот алгоритм может свернуть сотни измерений к всего двум, сохраняя при этом важные отношения между данными: чем ближе объекты располагаются в исходном пространстве, тем меньше расстояние между этими объектами в пространстве сокращенной размерности. t-SNE неплохо работает на маленьких и средних реальных наборах данных и не требует большого количества настроек гиперпараметров. Другими словами, если взять 100 000 точек и пропустить их через эту волшебный черный ящик, на выходе мы получим красивый график рассеяния.
Читать дальше →
Всего голосов 65: ↑64 и ↓1 +63
Просмотры29.3K
Комментарии 2

О том, как в Instagram отключили сборщик мусора Python и начали жить

Блог компании Wunder FundВысокая производительностьНенормальное программированиеPython
Перевод
Отключив сборщик мусора Python (GC), который освобождает память, отслеживая и удаляя неиспользуемые данные, Instagram стал работать на 10% быстрее. Да-да, вы не ослышались! Отключив сборщик мусора, можно сократить объем потребляемой памяти и повысить эффективность работы кэша процессора. Хотите узнать, почему так происходит? Тогда пристегните ремни!

Читать дальше →
Всего голосов 70: ↑68 и ↓2 +66
Просмотры37.7K
Комментарии 29

Обзор исследований в области глубокого обучения: обработка естественных языков

Блог компании Wunder FundМашинное обучениеNatural Language Processing
Перевод


Это третья статья из серии “Обзор исследований в области глубокого обучения” (Deep Learning Research Review) студента Калифорнийского университета в Лос-Анджелесе Адита Дешпанда (Adit Deshpande). Каждые две недели Адит публикует обзор и толкование исследований в определенной области глубинного обучения. В этот раз он сосредоточил свое внимание на применении глубокого обучения для обработки текстов на естественном языке.
Читать дальше →
Всего голосов 25: ↑24 и ↓1 +23
Просмотры23.1K
Комментарии 2

Dropout — метод решения проблемы переобучения в нейронных сетях

Блог компании Wunder FundАлгоритмыBig DataМашинное обучение
Перевод


Переобучение (overfitting) — одна из проблем глубоких нейронных сетей (Deep Neural Networks, DNN), состоящая в следующем: модель хорошо объясняет только примеры из обучающей выборки, адаптируясь к обучающим примерам, вместо того чтобы учиться классифицировать примеры, не участвовавшие в обучении (теряя способность к обобщению). За последние годы было предложено множество решений проблемы переобучения, но одно из них превзошло все остальные, благодаря своей простоте и прекрасным практическим результатам; это решение — Dropout (в русскоязычных источниках — “метод прореживания”, “метод исключения” или просто “дропаут”).
Читать дальше →
Всего голосов 20: ↑18 и ↓2 +16
Просмотры45.7K
Комментарии 4

LSTM – сети долгой краткосрочной памяти

Блог компании Wunder FundАлгоритмыМашинное обучение
Перевод

Рекуррентные нейронные сети


Люди не начинают думать с чистого листа каждую секунду. Читая этот пост, вы понимаете каждое слово, основываясь на понимании предыдущего слова. Мы не выбрасываем из головы все и не начинаем думать с нуля. Наши мысли обладают постоянством.

Традиционные нейронные сети не обладают этим свойством, и в этом их главный недостаток. Представим, например, что мы хотим классифицировать события, происходящие в фильме. Непонятно, как традиционная нейронная сеть могла бы использовать рассуждения о предыдущих событиях фильма, чтобы получить информацию о последующих.

Решить эту проблемы помогают рекуррентые нейронные сети (Recurrent Neural Networks, RNN). Это сети, содержащие обратные связи и позволяющие сохранять информацию.
Читать дальше →
Всего голосов 41: ↑39 и ↓2 +37
Просмотры106.2K
Комментарии 2

Генеративные модели от OpenAI

Блог компании Wunder FundАлгоритмыМашинное обучение
Перевод


Эта статья посвящена описанию четырех проектов, объединенных общей темой усовершенствования и применения генеративных моделей. В частности, речь пойдет о методах обучения без учителя и GAN.
 
Помимо описания нашей работы, в этой статье мы хотели бы подробнее рассказать о генеративных моделях: их свойствах, значении и возможных перспективах развития.
Читать дальше →
Всего голосов 14: ↑14 и ↓0 +14
Просмотры14.4K
Комментарии 1

Логарифмируй это: метод логарифмической производной в машинном обучении

Блог компании Wunder FundАлгоритмыМатематикаМашинное обучение
Перевод

Прием, о котором пойдет речь — метод логарифмической производной — помогает нам делать всякие штуки, используя основное свойство производной от логарифма. Лучше всего этот метод зарекомендовал себя в решении задач стохастической оптимизации, которые мы исследовали ранее. Благодаря его применению, мы нашли новый способ получения стохастических градиентных оценок. Начнем с примера использования приема для определения оценочной функции.

Довольно математично.
Читать дальше →
Всего голосов 22: ↑20 и ↓2 +18
Просмотры8.6K
Комментарии 1