Как стать автором
Обновить
  • по релевантности
  • по времени
  • по рейтингу

Data mining: Инструментарий — Theano

PythonData MiningBig Data
Tutorial

В предыдущих материалах этого цикла мы рассматривали методы предварительной обработки данных при помощи СУБД. Это может быть полезно при очень больших объемах обрабатываемой информации. В этой статье я продолжу описывать инструменты для интеллектуальной обработки больших объёмов данных, остановившись на использовании Python и Theano.
Читать дальше →
Всего голосов 23: ↑21 и ↓2 +19
Просмотры50K
Комментарии 4

Сравнение библиотек глубокого обучения на примере задачи классификации рукописных цифр

Блог компании IntelData MiningАлгоритмыОбработка изображенийМашинное обучение
Кручинин Дмитрий, Долотов Евгений, Кустикова Валентина, Дружков Павел, Корняков Кирилл

Введение


В настоящее время машинное обучение является активно развивающейся областью научных исследований. Это связано как с возможностью быстрее, выше, сильнее, проще и дешевле собирать и обрабатывать данные, так и с развитием методов выявления из этих данных законов, по которым протекают физические, биологические, экономические и другие процессы. В некоторых задачах, когда такой закон определить достаточно сложно, используют глубокое обучение.

Глубокое обучение (deep learning) рассматривает методы моделирования высокоуровневых абстракций в данных с помощью множества последовательных нелинейных трансформаций, которые, как правило, представляются в виде искусственных нейронных сетей. На сегодняшний день нейросети успешно используются для решения таких задач, как прогнозирование, распознавание образов, сжатие данных и ряда других.
Читать дальше →
Всего голосов 29: ↑29 и ↓0 +29
Просмотры49.5K
Комментарии 20

Deephack: хакатон по глубокому обучению с подкреплением, или как мы улучшали алгоритм Google Deepmind

АлгоритмыBig DataМатематикаМашинное обучение
С 19 по 25 июля проходил хакатон Deephack, где участники улучшали алгоритм обучения с подкреплением на базе Google Deepmind. Цель хакатона — научиться лучше играть в классические игры Atari (Space Invaders, Breakout и др.). Мы хотим рассказать, почему это важно и как это было.

Авторы статьи: Иван Лобов IvanLobov, Константин Киселев mrKonstantin, Георгий Овчинников ovchinnikoff.
Фотографии мероприятия: Мария Молокова, Политехнический музей.

Почему хакатон по обучению с подкреплением это круто:
  • Это первый в России хакатон с использованием глубокого обучения и обучения с подкреплением;
  • Алгоритм Google Deepmind — одно из последних достижений в области обучения с подкреплением;
  • Если вас интересует искусственный интеллект, то эта тема — очень близка к этому понятию (хотя мы сами и не хотели бы называть это ИИ).


Читать дальше →
Всего голосов 22: ↑14 и ↓8 +6
Просмотры12.4K
Комментарии 5

Рекурентная нейронная сеть в 10 строчек кода оценила отзывы зрителей нового эпизода “Звездных войн”

Блог компании DCA (Data-Centric Alliance)PythonМашинное обучение
Hello, Habr! Недавно мы получили от “Известий” заказ на проведение исследования общественного мнения по поводу фильма «Звёздные войны: Пробуждение Силы», премьера которого состоялась 17 декабря. Для этого мы решили провести анализ тональности российского сегмента Twitter по нескольким релевантным хэштегам. Результата от нас ждали всего через 3 дня (и это в самом конце года!), поэтому нам нужен был очень быстрый способ. В интернете мы нашли несколько подобных онлайн-сервисов (среди которых sentiment140 и tweet_viz), но оказалось, что они не работают с русским языком и по каким-то причинам анализируют только маленький процент твитов. Нам помог бы сервис AlchemyAPI, но ограничение в 1000 запросов в сутки нас также не устраивало. Тогда мы решили сделать свой анализатор тональности с блэк-джеком и всем остальным, создав простенькую рекурентную нейронную сеть с памятью. Результаты нашего исследования были использованы в статье “Известий”, опубликованной 3 января.



В этой статье я немного расскажу о такого рода сетях и познакомлю с парой классных инструментов для домашних экспериментов, которые позволят строить нейронные сети любой сложности в несколько строк кода даже школьникам. Добро пожаловать под кат.
Читать дальше →
Всего голосов 82: ↑75 и ↓7 +68
Просмотры154.8K
Комментарии 48

Фальшивомонетчики против банкиров: стравливаем adversarial networks в Theano

АлгоритмыОбработка изображенийМашинное обучение
image
Вы бы никогда не подумали, но это прогулка по пространству нейросети-фальшивомонетчика. Сделано крутейшими людьми Anders Boesen Lindbo Larsen и Søren Kaae Sønderby

Допустим, у нас есть задача — понять окружающий мир.
Давайте для простоты представим, что мир — это деньги.

Метафора, может быть, с некоторой моральной двусмысленностью, но в целом пример не хуже прочих — деньгам (банкнотам) определенно свойственна какая-то сложная структура, тут у них цифра, тут буква, а там хитрые водяные знаки. Предположим, нам нужно понять, как они сделаны, и узнать правило, по которым их печатают. Какой план?

Напрашивающийся шаг — это пойти в офис центрального банка и попросить их выдать спецификацию, но во-первых, вам ее не дадут, а во-вторых, если выдерживать метафору, то у вселенной нет центрального банка (хотя на этот счет есть религиозные разногласия).

Ну, раз так, давайте попробуем их подделать.
Осторожно, тяжелые гифки
Всего голосов 34: ↑34 и ↓0 +34
Просмотры33.9K
Комментарии 22

Разбираемся с войной нейронных сетей (GAN)

Big DataМашинное обучение
Generative adversarial networks (GAN) пользуются все большей популярностью. Многие говорят о них, кто-то даже уже использует… но, как выясняется, пока мало кто (даже из тех кто пользуется) понимает и может объяснить. ;-)
Давайте разберем на самом простом примере, как же они работают, чему учатся и что на самом деле порождают.
Читать дальше →
Всего голосов 21: ↑18 и ↓3 +15
Просмотры35.3K
Комментарии 10

Распознавание DGA доменов. А что если нейронные сети?

Блог компании Digital SecurityИнформационная безопасностьМашинное обучение

Всем привет!


Сегодня мы поговорим про распознавание доменов, сгенерированных при помощи алгоритмов генерации доменных имен. Посмотрим на существующие методы, а также предложим свой, на основе рекуррентных нейронных сетей. Интересно? Добро пожаловать под кат.

Читать дальше →
Всего голосов 22: ↑20 и ↓2 +18
Просмотры12.9K
Комментарии 8

Стилизация изображений с помощью нейронных сетей: никакой мистики, просто матан

Блог компании Mail.ru GroupАлгоритмыОбработка изображенийМатематикаМашинное обучение

Приветствую тебя, Хабр! Наверняка вы заметили, что тема стилизации фотографий под различные художественные стили активно обсуждается в этих ваших интернетах. Читая все эти популярные статьи, вы можете подумать, что под капотом этих приложений творится магия, и нейронная сеть действительно фантазирует и перерисовывает изображение с нуля. Так уж получилось, что наша команда столкнулась с подобной задачей: в рамках внутрикорпоративного хакатона мы сделали стилизацию видео, т.к. приложение для фоточек уже было. В этом посте мы с вами разберемся, как это сеть "перерисовывает" изображения, и разберем статьи, благодаря которым это стало возможно. Рекомендую ознакомиться с прошлым постом перед прочтением этого материала и вообще с основами сверточных нейронных сетей. Вас ждет немного формул, немного кода (примеры я буду приводить на Theano и Lasagne), а также много картинок. Этот пост построен в хронологическом порядке появления статей и, соответственно, самих идей. Иногда я буду его разбавлять нашим недавним опытом. Вот вам мальчик из ада для привлечения внимания.


Читать дальше →
Всего голосов 145: ↑141 и ↓4 +137
Просмотры83.9K
Комментарии 38

Deep Learning: Сравнение фреймворков для символьного глубокого обучения

Блог компании MicrosoftPythonАлгоритмыМашинное обучение
Перевод
Представляем вам перевод серии статей посвященных глубокому обучению. В первой части описан выбор фреймворка с отрытым кодом для символьного глубокого обучения, между MXNET, TensorFlow, Theano. Автор подробно сравнивает преимущества и недостатки каждого из них. В следующих частях вы узнаете о тонкой настройке глубоких сверточных сетей, а также о сочетании глубокой сверточной нейронной сети с рекуррентной нейронной сетью.


Читать дальше →
Всего голосов 28: ↑26 и ↓2 +24
Просмотры28K
Комментарии 12

Библиотеки для глубокого обучения Theano/Lasagne

Блог компании Open Data SciencePythonАлгоритмыМатематикаМашинное обучение
Tutorial

Привет, Хабр!


Параллельно с публикациями статей открытого курса по машинному обучению мы решили запустить ещё одну серию — о работе с популярными фреймворками для нейронных сетей и глубокого обучения.


Я открою этот цикл статьёй о Theano — библиотеке, которая используется для разработки систем машинного обучения как сама по себе, так и в качестве вычислительного бекэнда для более высокоуровневых библиотек, например, Lasagne, Keras или Blocks.


Theano разрабатывается с 2007 года главным образом группой MILA из Университета Монреаля и названа в честь древнегреческой женщины-философа и математика Феано (предположительно изображена на картинке). Основными принципами являются: интеграция с numpy, прозрачное использование различных вычислительных устройств (главным образом GPU), динамическая генерация оптимизированного С-кода.

Читать дальше →
Всего голосов 53: ↑53 и ↓0 +53
Просмотры38.3K
Комментарии 11

Библиотеки для глубокого обучения: Keras

Блог компании Open Data SciencePythonData MiningМатематикаМашинное обучение

Привет, Хабр! Мы уже говорили про Theano и Tensorflow (а также много про что еще), а сегодня сегодня пришло время поговорить про Keras.


Изначально Keras вырос как удобная надстройка над Theano. Отсюда и его греческое имя — κέρας, что значит "рог" по-гречески, что, в свою очередь, является отсылкой к Одиссее Гомера. Хотя, с тех пор утекло много воды, и Keras стал сначала поддерживать Tensorflow, а потом и вовсе стал его частью. Впрочем, наш рассказ будет посвящен не сложной судьбе этого фреймворка, а его возможностям. Если вам интересно, добро пожаловать под кат.


image
Читать дальше →
Всего голосов 55: ↑55 и ↓0 +55
Просмотры130.6K
Комментарии 13

Быстрый старт: обзор основных Deep Learning фреймворков

Блог компании New Professions LabData MiningBig DataМашинное обучение
Привет, Хабр! Предлагаем вам перевод поста “Getting Started with Deep Learning” от Мэтью Рубашкина из Silicon Valley Data Science о преимуществах и недостатках существующих Deep Learning технологий и о том, какой фреймворк выбрать, учитывая специфику задачи и способности команды.
image
Читать дальше →
Всего голосов 29: ↑23 и ↓6 +17
Просмотры22.7K
Комментарии 4

Нейрокурятник: часть 4 — итоговая модель и код на прод

Open sourcePythonData MiningОбработка изображенийМашинное обучение
Tutorial
image

Типичный день в нейрокурятнике — куры часто еще и крутятся в гнезде

Чтобы довести, наконец, проект нейрокурятника до своего логического завершения, нужно произвести на свет работающую модель и задеплоить ее на продакшен, да еще и так, чтобы соблюдался ряд условий:

  • Точность предсказаний не менее 70-90%;
  • Raspberry pi в самом курятнике в идеале мог бы определять принадлежности фотографий к классам;
  • Нужно как минимум научиться отличать всех кур друг от друга. Программа максимум — также научиться считать яйца;

В данной статье мы расскажем что же в итоге у нас получилось, какие модели мы попробовали и какие занятные вещи нам попались на дороге.

Статьи про нейрокурятник

Заголовок спойлера
  1. Вступление про обучение себя нейросетям
  2. Железо, софт и конфиг для наблюдения за курами
  3. Бот, который постит события из жизни кур — без нейросети
  4. Разметка датасетов
  5. Работающая модель для распознавания кур в курятнике
  6. Итог — работающий бот, распознающий кур в курятнике
Читать дальше →
Всего голосов 42: ↑40 и ↓2 +38
Просмотры11.7K
Комментарии 6

Нестандартная кластеризация 4: Self-Organizing Maps, тонкости, улучшения, сравнение с t-SNE

Data MiningАлгоритмыМатематикаМашинное обучение
Часть первая — Affinity Propagation
Часть вторая — DBSCAN
Часть третья — кластеризация временных рядов
Часть четвёртая — Self-Organizing Maps (SOM)
Часть пятая — Growing Neural Gas (GNG)

Self-organizing maps (SOM, самоорганизующиеся карты Кохонена) — знакомая многим классическая конструкция. Их часто поминают на курсах машинного обучения под соусом «а ещё нейронные сети умеют вот так». SOM успели пережить взлёт в 1990-2000 годах: тогда им пророчили большое будущее и создавали новые и новые модификации. Однако, в XXI веке SOM понемногу уходят на задний план. Хоть новые разработки в сфере самоорганизующихся карт всё ещё ведутся (большей частью в Финляндии, родине Кохонена), даже на родном поле визуализации и кластеризации данных карты Кохонена всё чаще уступает t-SNE.

Давайте попробуем разобраться в тонкостях SOM'ов, и выяснить, заслуженно ли они были забыты.


Читать дальше →
Всего голосов 16: ↑15 и ↓1 +14
Просмотры16.1K
Комментарии 1

Генерация классической музыки с помощью рекуррентной нейросети

ДемосценаИскусственный интеллект
В наше время обучаемые нейросети творят удивительные вещи, но эксперименты в этой области продолжают открывать нечто новое. Например, программист Даниэль Джонсон (Daniel Johnson) опубликовал результаты своих экспериментов по применению нейросетей для генерации классической музыки.

К сожалению, на GT нельзя встроить аудиофайл, поэтому приходится давать прямую ссылку, чтобы послушать один из результатов: http://hexahedria.com/files/nnet_music_2.mp3.

Как у него это получилось?
Читать дальше →
Всего голосов 20: ↑20 и ↓0 +20
Просмотры28.5K
Комментарии 46