Открыть список
Как стать автором
Обновить
  • по релевантности
  • по времени
  • по рейтингу

2 Пи или не 2 Пи — вот в чём вопрос

Блог компании Wolfram ResearchЗанимательные задачкиПрограммированиеМатематика
Перевод

Перевод поста Giorgia Fortuna "2 Pi or Not 2 Pi?".
Выражаю огромную благодарность Кириллу Гузенко за помощь в переводе.

Три месяца назад мир (или по крайней мере мир гиков) праздновал день Пи (03.14.15...). Сегодня (6/28 — 28 июня 2015 г.) другой математический день — день 2π, или день Тау (2π = 6.28319...).

Некоторые говорят, что день тау действительно является днём для празднования, и что τ (= 2π), а не π, должен быть самой важной константой. Все началось в 2001 году со вступительного слова знаменитого эссе Боба Пале, математика из университета Юты:

“Я знаю, что некоторые сочтут это богохульством, но я считаю, что π — это ошибка”.

Это вызвало в некоторых кругах празднование дня тау — или, как многие говорят, единственного дня, в который можно съесть два пи(рога) (2pies≈2π — игра слов в англ. языке).

Однако правда ли то, что τ — константа получше? В современном мире это довольно просто проверить, а Wolfram Language делает эту задачу ещё проще (действительно, недавний пост в блоге Майкла Тротта о датах в числе пи, вдохновлённый постом Стивена Вольфрама о праздновании векового дня числа пи, весьма активно задействовал Wolfram Language). Я начала с рассмотрения 320000 препринтов на arXiv.org чтобы посмотреть, сколько в действительности формул содержат 2π по сравнению с теми, что содержат просто π или π с другими сомножителями.

Вот облако из некоторых формул, построенное с помощью функции WordCloud, содержащих 2π:

WordCloud
Читать дальше →
Всего голосов 27: ↑23 и ↓4 +19
Просмотры32.7K
Комментарии 26

Избегаем тригонометрии

ПрограммированиеСовершенный кодРабота с 3D-графикойАлгоритмыМатематика
Перевод

Вступление


Мне кажется, что нам надо использовать меньше тригонометрии в компьютерной графике. Хорошее понимание проекций, отражений и векторных операций (как в истинном значении скалярного (dot) и векторного (cross) произведений векторов) обычно приходит с растущим чувством беспокойства при использовании тригонометрии. Точнее, я считаю, что тригонометрия хороша для ввода данных в алгоритм (для понятия углов это интуитивно понятный способ измерения ориентации), я чувствую, что что-то не так, когда вижу тригонометрию, находящуюся в глубинах какого-нибудь алгоритма 3D-рендеринга. На самом деле, я думаю, что где-то умирает котенок, когда туда закрадывается тригонометрия. И я не так беспокоюсь о скорости или точности, но с концептуальной элегантностью я считаю… Сейчас объясню.
Читать дальше →
Всего голосов 92: ↑86 и ↓6 +80
Просмотры23.6K
Комментарии 17

Трюк с тригонометрией

ПрограммированиеСовершенный кодАлгоритмыМатематика
Перевод

Скорее всего, вам известны следующие соотношения еще со школы:


$\sin(\alpha + \beta) = \sin\alpha \times \cos\beta + \cos\alpha \times \sin\beta \\ \cos(\alpha + \beta) = \cos\alpha \times \cos\beta - \sin\alpha \times \sin\beta$


Когда вы в детстве впервые познакомились с этой формулой, скорее всего, вашим первым чувством была боль из-за того, что эту формулу надо запомнить. Это очень плохо, потому что на самом деле вам не нужно запоминать эту формулу — она сама выводится, когда вы поворачиваете треугольник на бумаге. На самом деле, я делаю то же самое, когда записываю эту формулу. Это толкование будет очевидным к середине этой статьи. Но сейчас, чтобы оставить все веселье на потом и отодвинуть момент, когда вы скажете "Эврика!", давайте подумаем, а зачем нам вообще задумываться об этой формуле.


Читать дальше →
Всего голосов 99: ↑96 и ↓3 +93
Просмотры26.3K
Комментарии 28

Ещё немного о тригонометрии в вычислениях

АлгоритмыМатематика


На Хабре было уже много статей, посвящённых быстрым вычислениям тригонометрии, когда сильно надо, но я хотел бы дополнить их одной небольшой заметкой с отсылкой к школьной тригонометрии.

Читать дальше →
Всего голосов 17: ↑11 и ↓6 +5
Просмотры5.9K
Комментарии 27