Открыть список
Как стать автором
Обновить
  • по релевантности
  • по времени
  • по рейтингу

Моделирование динамических систем: решение нелинейных уравнений

ПрограммированиеМатематика
Tutorial

Введение



Конечной целью математического моделирования в любой области знаний является получение количественных характеристик исследуемого объекта. Некоторые параметры пушки, стрельбу из которой мы моделировали в прошлый раз, были заданы в условии задачи: начальная скорость снаряда, его калибр и материал, из которого он изготовлен. Угол наклона ствола можно отнести к варьируемым параметрам: любое серьезное орудие допускает наводку, в том числе и в вертикальной плоскости.



На выходе мы получили траекторию полета снаряда, что дает нам ориентировочные представления о характеристиках орудия: при заданных параметрах мы получили дальность стрельбы чуть более 2,5 км и высоту подъема снаряда чуть выше 800 метров. Точнее мы сказать не можем, вернее можем, если с карандашиком по сетке определим координаты нужных точек на графике. Но это, как известно, не наш метод. Хорошо бы получить эти данные с точностью, обеспечиваемой используемыми нами инструментами и без ручного труда. Вот об этом мы сегодня и поговорим.
Читать дальше →
Всего голосов 29: ↑29 и ↓0 +29
Просмотры9.6K
Комментарии 11

Численные методы решения систем нелинейных уравнений

PythonАлгоритмыМатематикаРазработка под Windows

Введение


Многие прикладные задачи приводят к необходимости нахождения общего решения системы нелинейных уравнений. Общего аналитического решения системы нелинейных уравнений не найдено. Существуют лишь численные методы.

Следует отметить интересный факт о том, что любая система уравнений над действительными числами может быть представлена одним равносильным уравнением, если взять все уравнения в форме , возвести их в квадрат и сложить.

Для численного решения применяются итерационные методы последовательных приближений (простой итерации) и метод Ньютона в различных модификациях. Итерационные процессы естественным образом обобщаются на случай системы нелинейных уравнений вида:

(1)

Обозначим через вектор неизвестных и определим вектор-функцию Тогда система (1) записывается в виде уравнения:

(2)

Теперь вернёмся к всеми любимому Python и отметим его первенство среди языков программирования, которые хотят изучать [1].



Этот факт является дополнительным стимулом рассмотрения числительных методов именно на Python. Однако, среди любителей Python бытует мнение, что специальные библиотечные функции, такие как scipy.optimize.root, spsolve_trianular, newton_krylov, являются самым лучшим выбором для решения задач численными методами.

С этим трудно не согласится хотя бы потому, что в том числе и разнообразие модулей подняло Python на вершину популярности. Однако, существуют случаи, когда даже при поверхностном рассмотрении использование прямых известных методов без применения специальных функций библиотеки SciPy тоже дают неплохие результаты. Иными словами, новое- это хорошо забытое старое.
Читать дальше →
Всего голосов 12: ↑9 и ↓3 +6
Просмотры38.1K
Комментарии 0

Julia и уравнения в частных производных

JuliaФизика


На примере типичнейших физических моделей закрепим навыки работы с функциями и познакомимся с быстрым, удобным и красивым визуализатором PyPlot, предоставляющим всю мощь питоновской Matplotlib. Будет много картинок (упрятанных под спойлеры)

Читать дальше →
Всего голосов 14: ↑12 и ↓2 +10
Просмотры5.7K
Комментарии 3

Новые квантовые алгоритмы, совершившие прорыв в нелинейных уравнениях

Блог компании OTUSМатематика
Перевод

Две команды нашли сразу два разных способа для квантовых компьютеров обрабатывать нелинейные системы, представив их в виде линейных.

Иногда компьютер может очень легко предсказывать будущее. Простые явления — например, то, как сок стекает по стволу дерева, несложны и могут быть отражены в нескольких строках кода, использующих то, что математики называют линейными дифференциальными уравнениями. Но в нелинейных системах взаимодействия могут влиять сами на себя: когда воздушный поток проходит мимо крыльев самолета, воздушный поток изменяет молекулярные взаимодействия, которые изменяют воздушный поток, и так далее. Этот цикл обратной связи порождает настоящий хаос, когда небольшие изменения в начальных условиях приводят к совершенно иному поведению в дальнейшем, делая прогнозы практически невозможными — независимо от того, насколько мощный компьютер.

Читать далее
Всего голосов 12: ↑9 и ↓3 +6
Просмотры2.9K
Комментарии 2