Как стать автором
Обновить

Как выглядело бы Московское метро в трехмерном мире

Время на прочтение 10 мин
Количество просмотров 105K
UPD: По просьбам в комментах добавляю ссылку на вращабельную схему на Javascript
К сожалению, код javascript вставить в тело поста не удалось
Добрый день! Недавно я читал блог одного урбаниста, который рассуждал о том, какая должна быть идеальная схема метро.Схему метро можно рисовать исходя из двух принципов:

  • Схема должна быть удобной и простой для запоминания и ориентирования
  • Схема должна соответствовать географии города

Очевидно, что эти принципы взаимоисключающие и первый принцип требует существенного искажения географической реальности.

Достаточно вспомнить, как выглядит схема Московского метро с красивыми кольцами и прямыми линиями:

image

и сравнить с географически точным планом:

image

На плане видно что кольца вовсе не являются идеально ровными и концентрическими, линии изгибаются гораздо сильнее, чем в схеме, а плотность станций в центре города настолько велика, что в плане практически невозможно разобраться.

И хотя второе изображение гораздо точнее отображает реальность, видно, что пользоваться для планирования маршрута в метро удобнее первой схемой.

И тут мне в голову пришла следующая мысль: «Как выглядело бы метро, если бы критерием для построения схемы являлось время, требуемое для перемещения от одной станции к другой?». То есть если от одной станции до другой добраться быстро, то пространственно они на схеме располагались бы недалеко.

Очевидно, что в двумерном пространстве невозможно нарисовать такую схему, в которой расстояние между двумя станциями равнялось бы времени путешествия от одной к другой из-за сложной топологии графа метро.

Также есть догадка, что такое точно возможно при построении схемы в пространстве с высокой размерностью (верхняя оценка n-1, где n- число станций). Для пространства с небольшим количеством измерений такую схему можно построить лишь приближенно.

Задача построения карты метро по времени путешествия выглядит типичной задачей оптимизации.
Пусть у нас есть начальный набор координат всех станций (X,Y,Z) и целевая матрица попарных времен (расстояний). Можно сконструировать метрику «неправильность» данного набора координат и далее минимизировать ее методом градиентного спуска по каждой из координат каждой станции. В качестве метрики можно взять простую функцию среднеквадратичного отклонения расстояний.

Что же, осталось дело за малым — нужно получить данные о том, сколько времени следует затратить на путешествие от любой станции московского метро к любой другой.

Первой мыслью было проверить api яндекс метро и вытащить оттуда эти данные. К сожалению, описания api и найти не удалось. Смотреть времена вручную в приложении долго (в метро 268 станций и размер матрицы времен 268*268=71824). Поэтому я решил разобраться в исходных данных Яндекс Метро. Так как доступа к серверу нет, был скачан apk файл с приложением и обнаружены необходимые данные. Вся информация о метро замечательно структурирована и хранится в формате JSON в папке assets/metrokit/ apk-архива приложения. Все данные хранятся в self-explanotary структурах. Meta.json содержит информацию о городах, схемы которых присутствуют в приложении, а также id данных схем.

{
            "id": "sc77792237", 
            "name": {
                "en": "Nizhny Novgorod", 
                "ru": "Нижний Новгород", 
                "tr": "Nizhny Novgorod", 
                "uk": "Нижній Новгород"
            }, 
            "size": {
                "packed": 30300, 
                "unpacked": 145408
            }, 
            "tags": [
                "published"
            ], 
            "aliases": [
                "nizhny-novgorod"
            ], 
            "logoUrl": "https://avatars.mds.yandex.net/get-bunker/135516/f2f0e33d8def90c56c189cfb57a8e6403b5a441c/orig", 
            "version": "2c27fe1", 
            "geoRegion": {
                "delta": {
                    "lat": 0.168291, 
                    "lon": 0.219727
                }, 
                "center": {
                    "lat": 56.326635, 
                    "lon": 43.992153
                }
            }, 
            "countryCode": "RU", 
            "defaultAlias": "nizhny-novgorod"
        }

По id схемы находим папку с JSON, относящиеся и к Москве.

Файл data.json содержит основную информацию о графе метро, включая названия узлов графа, id узлов, географические координаты узлов, информацию о переходах с одной станции на другую (id, время перехода, тип перехода — перегон или пешком, по улицу или нет, время интересующее нас в секундах) а также много дополнительной информации о входах и выходах со станции. С этим достаточно легко разобраться. Начнем писать код для построения нашей схемы.

Импортируем необходимые библиотеки:

import numpy as np 
import json
import codecs
import networkx as nx
import matplotlib.pyplot as plt
import pandas as pd 
import itertools
import keras
import keras.backend as K
from mpl_toolkits.mplot3d import Axes3D
from mpl_toolkits.mplot3d.proj3d import proj_transform
from matplotlib.text import Annotation
import pickle

Структура словарей и списков python полностью соответствует структуре формата json, поэтому читаем иннформацию о метро и создаем объекты, соответствующие json объектам.

names = json.loads(codecs.open( "l10n.json", "r", "utf_8_sig" ).read() )
graph = json.loads(codecs.open( "data.json", "r", "utf_8_sig" ).read() )

Создаем словарь, ставящий в соответствие узлы графа и станции (это необходима для так как к именам привязаны именно станции, а не узлы графа)

Также на всякий случай сохраним координаты узлов для возможности построения географической карты (нормированы на диапазон 0-1)

nodeStdict={}
for stop in graph['stops']['items']:
    nodeStdict[stop['nodeId']]=stop['stationId']
coordDict={}
for node in graph['nodes']['items']:
    coordDict[node['id']]=(node['attributes']['geoPoint']['lon'],node['attributes']['geoPoint']['lat'])
lats=[]
longs=[]
for value in coordDict.values():
    lats.append(value[1])
    longs.append(value[0])
for k,v in coordDict.items():
    coordDict[k]=((v[0]-np.min(longs))/(np.max(longs)-np.min(longs)),(v[1]-np.min(lats))/(np.max(lats)-np.min(lats)))

Создадим граф метро со связями. Зададим веса каждой связи. Вес соответствует времени в пути. Удалим узлы, не являющиеся станциями (по-моему это выходы из метро а связи к ним нужны для яндекс карт при расчете времени, но точно не разбирался) создадим словарь id узла- реальное название на русском языке

G=nx.Graph()
for node in graph['nodes']['items']:
    G.add_node(node['id'])
#graph['links']
for link in graph['links']['items']:
    #G.add_edges_from([(link['fromNodeId'],link['toNodeId'])])
    G.add_edge(link['fromNodeId'], link['toNodeId'], length=link['attributes']['time'])
nodestoremove=[]
for node in G.nodes():
    if len(G.edges(node))<2:
        nodestoremove.append(node)
for node in nodestoremove:
    G.remove_node(node)
labels={}
for node in G.nodes():
    try:
        labels[node]=names['keysets']['generated'][nodeStdict[node]+'-name']['ru']
    except: labels[node]='error'

Определим к какой ветке (к какому id ветки) относится каждый узел (это понадобится позже для раскрашивания линий метро на схеме)

def getlines(graph, G):
    nodetoline={}
    id_from={}
    id_to={}
    for lk in graph['tracks']['items']:
        id_from[lk['id']]=lk['fromNodeId']
        id_to[lk['id']]=lk['toNodeId']
    for line in graph['linesToTracks']['items']:
        if line['trackId'] in id_from.keys():
            nodetoline[id_from[line['trackId']]]=line['lineId']
            nodetoline[id_to[line['trackId']]]=line['lineId']
    return nodetoline
lines=getlines(graph,G)

библиотека networkx позволяет найти длину кратчайшего пути от одного узла к другому при помощи функции nx.shortest_path_length(G, id1, id2, weight='length'), поэтому можно считать что с подготовкой данных закончили. Следующее, что необходимо сделать — подготовить модель, которая будет оптимизировать координаты станций.

Для этого разберемяся, что будет даваться на вход, на выход и как будем оптимизировать матрицу координат станций.

Предположим, у нас есть матрица всех координат (3x268). Умножение one-hot вектора (вектора, где везде 0, кроме одной единичной координаты на месте n) размерности 268 на данную матрицу координат даст 3 координаты, соответствующие станции n. Если мы возьмем пару one-hot векторов и умножим их на необходимую матрицу, то получим две тройки координат. Из пары координат можно расчитать евклидово расстояние между станциями. Таким образом, можно определить архитектуру нашей модели:



на вход мы подаем пару станций, на выходе получаем расстояние между ними.

После того, как мы определились с форматом данных для обучения модели, подготовим данные с использованием поиска расстояний на графе:

myIDs=list(G.nodes())
listofinputs1=[]
listofinputs2=[]
listofoutputs=[]
for pair in itertools.product(G.nodes(), repeat=2):
    vec1=np.zeros((len(myIDs)))
    vec2=np.zeros((len(myIDs)))
    vec1[myIDs.index(pair[0])]=1
    vec2[myIDs.index(pair[1])]=1
    listofinputs1.append(vec1)
    listofinputs2.append(vec2)
    #listofinputs.append([vec1,vec2])
    listofoutputs.append(nx.shortest_path_length(G, pair[0], pair[1], weight='length')/3600)
    #myDistMatrix[myIDs.index(pair[0]),myIDs.index(pair[1])]=nx.shortest_path_length(G, pair[0], pair[1], weight='length')

Оптимизируем методом градиентного спуска матрицу координат станций.

Если мы будем использовать фреймворк keras для машинного обучения, то получим следующее:

np.random.seed(0)
initweightmatrix=np.zeros((len(myIDs),3))
for i in range(len(myIDs)):
    initweightmatrix[i,:2]=coordDict[myIDs[i]]
    initweightmatrix[i,2]=np.random.randn()*0.001

def euclidean_distance(vects):
    x, y = vects
    sum_square = K.sum(K.square(x - y), axis=1, keepdims=True)
    return K.sqrt(K.maximum(sum_square, K.epsilon()))
def eucl_dist_output_shape(shapes):
    shape1, shape2 = shapes
    return (shape1[0], 1)

inp1=keras.layers.Input((len(myIDs),))
inp2=keras.layers.Input((len(myIDs),))
layer1=keras.layers.Dense(3,use_bias=None, activation=None)
x1=layer1(inp1)
x2=layer1(inp2)
x=keras.layers.Lambda(euclidean_distance,
                  output_shape=eucl_dist_output_shape)([x1, x2])
out=keras.layers.Dense(1,use_bias=None,activation=None)(x)
model=keras.Model(inputs=[inp1,inp2],outputs=out)
model.layers[2].set_weights([initweightmatrix])
model.layers[2].trainable=False
model.compile(optimizer=keras.optimizers.Adam(lr=0.01), loss='mse')

заметим, что в качестве начальных координат в слое layer1 мы используем реальные географические координаты -это необходимо для того, чтобы не попасть в локальный минимум функции СКО. Третью координату инициализируем ненулевой для получения ненулевого градиента (если в начале карта будет абсолютно плоской, смещение любой станции вверх или вниз будет равнозначно, следовательно градиент равен 0 и оптимизации z не произойдет). Последний элемент нашей модели (Dense(1)) влияет на масштабирование схемы для соответствия временной шкале.

Расстояние будем измерять в часах, а не секундах, так как порядки расстояний — около 1 часа, а для более эффективного обучении модели важно, чтобы все величины (входные данные, веса, targetы) были примерно одного порядка по величине. Если эти значения близки к 1, то можно использовать стандартные значения шага при оптимизации (0.001-0.01).

Строка model.layers[2].trainable=False замораживает координаты станций и на первом этапе варьируется один параметр — масштаб. После подбора масштаба нашей схемы размораживаем координаты и оптимизируем уже их:

hist=model.fit([listofinputs1,listofinputs2],listofoutputs,batch_size=71824,epochs=200)
model.layers[2].trainable=True
model.layers[-1].trainable=False
model.compile(optimizer=keras.optimizers.Adam(lr=0.01), loss='mse')
hist2=model.fit([listofinputs1,listofinputs2],listofoutputs,batch_size=71824,epochs=200)

видим, что на вход подаем сразу все пары станций, на выходе — все расстояния и наша оптимизация- full batch gradient descent (один шаг на всех данных). Функция loss в данном случае — среднеквадратичное отклонение и можно видеть, что оно составило 0.015 в конце обучения, что значит среднеквадратичное отклонение менее чем в 1 минуты для любой пары станций. Иными словами, полученная схема позволяет точно узнать расстояние, которое требуется, чтобы добраться от одной станции к другой по расстоянию по прямой между станциями сточностью +-1 минута!

Но давайте посмотрим, как выглядит наша схема!

получим координаты станций, возьмем цветовую кодировку линий и построим 3d изображение с подписями (код для красивого отображения подписей взят отсюда):

class Annotation3D(Annotation):
    '''Annotate the point xyz with text s'''

    def __init__(self, s, xyz, *args, **kwargs):
        Annotation.__init__(self,s, xy=(0,0), *args, **kwargs)
        self._verts3d = xyz        

    def draw(self, renderer):
        xs3d, ys3d, zs3d = self._verts3d
        xs, ys, zs = proj_transform(xs3d, ys3d, zs3d, renderer.M)
        self.xy=(xs,ys)
        Annotation.draw(self, renderer)

def annotate3D(ax, s, *args, **kwargs):
    '''add anotation text s to to Axes3d ax'''

    tag = Annotation3D(s, *args, **kwargs)
    ax.add_artist(tag)

fincoords=model.layers[2].get_weights()
ccode={}
for obj in graph['services']['items']:
    ccode[obj['id']]=('\#'+obj['attributes']['color'])[1:]

xn = fincoords[0][:,0]
yn = fincoords[0][:,1]
zn = fincoords[0][:,2]
l=[labels[idi] for idi in myIDs]
colors=[ccode[lines[idi]] for idi in myIDs]
xyzn = zip(xn, yn, zn)

fig = plt.figure()
ax = fig.gca(projection='3d')
ax.scatter(xn,yn,zn, c=colors, marker='o')
for j, xyz_ in enumerate(xyzn): 
    annotate3D(ax, s=labels[myIDs[j]], xyz=xyz_, fontsize=9, xytext=(-3,3),
               textcoords='offset points', ha='right',va='bottom')    
plt.show()

Так как возникли трудности с конвертацией в интерактивный 3d формат для браузера, выкладываю гифки:



более красиво и узнаваемо выглядит версия без текста:

xn = fincoords[0][:,0]
yn = fincoords[0][:,1]
zn = fincoords[0][:,2]
l=[labels[idi] for idi in myIDs]
colors=[ccode[lines[idi]] for idi in myIDs]
xyzn = zip(xn, yn, zn)

fig = plt.figure()
ax = fig.gca(projection='3d')
ax.scatter(xn,yn,zn, c=colors, marker='o')
plt.show()



UPD: Добавим линии метро нужного цвета и создадим гифку. Черные линии — переходы между станциями:

myedges=[(myIDs.index(edge[0]),myIDs.index(edge[1]))for edge in G.edges]
xn = fincoords[0][:,0]
yn = fincoords[0][:,1]
zn = fincoords[0][:,2]
l=[labels[idi] for idi in myIDs]
c=[ccode[lines[idi]] for idi in myIDs]

fig = plt.figure()
ax = fig.gca(projection='3d')
ax.scatter(x,y,z, c=c, marker='o',s=25)
for edge in myedges:
    col='black'
    if c[edge[0]]==c[edge[1]]:
        col=c[edge[0]]
    ax.plot3D([x[edge[0]], x[edge[1]]], [y[edge[0]], y[edge[1]]], [z[edge[0]], z[edge[1]]], col)

ims = []

def rotate(angle):
    ax.view_init(azim=angle)

rot_animation = animation.FuncAnimation(fig, rotate, frames=np.arange(0, 362, 3), interval=70)
rot_animation.save('rotation2.gif', dpi=80, writer=matplotlib.animation.PillowWriter(80))



Из данной схемы можно сделать некоторые интересные выводы, которые не столь очевидны из других схем. Для некоторых веток, например зеленой, синей или фиолетовой МЦК (розовое кольцо) практически бесполезно из-за неудобных пересадок, что видно в удалении кольца от этих веток. Самые длинные по времени маршруты — от коммунарки до щелкого или пятницкого шоссе (коней красной и розовая/синяя линии) длинные маршруты так же алмаатинская-рассказовка и бунинская аллея-некрасовка. На севере Москвы, судя по плану, происходит частичное дублирование серой и салатовой ветками — они находятся рядом на схеме. Было бы итересно посмотреть на то, как новые линии (МЦД, БКЛ) и кто чаще будет пользоваться ими. В любом случае, надеюсь, подобные схемы могут быть интересным инструментам анализа, вдохновения и планирования поездок.

P.S. 3D не обязательно, для 2D варианта достаточно чуть-чуть исправить код. Но в случае 2d схемы добиться подобной точности расстояний невозможно.

Теги:
Хабы:
+148
Комментарии 87
Комментарии Комментарии 87

Публикации

Истории

Работа

Python разработчик
130 вакансий
Data Scientist
66 вакансий

Ближайшие события

Московский туристический хакатон
Дата 23 марта – 7 апреля
Место
Москва Онлайн
Геймтон «DatsEdenSpace» от DatsTeam
Дата 5 – 6 апреля
Время 17:00 – 20:00
Место
Онлайн