Как стать автором
Обновить

Гарантии получения корректного результата при расчете динамических систем

Математика
Из песочницы
Прочитав статью «Динамическая система Лоренца и вычислительный эксперимент», проверил расчеты с помощью аналитически-численного метода [1].

Результаты расчета на фазовой плоскости z(x):


И y(x):


Кажется, что кривые замкнуты, но давайте рассмотрим результат поподробнее.

Кратко об используемом методе расчета
Аналитически-численный метод принадлежит к самостартующим непрерывным методам переменного порядка с адаптивной процедурой выбора шага и с контролем уровней предельных абсолютных локальной и полной погрешностей расчёта.
Применяется для решения обыкновенных нелинейных неавтономных нестационарных интегродифференциальных уравнений, описывающих динамические модели систем при детерминированных воздействиях.
При расчете регулярная составляющая искомого решения представляется в форме ряда Тейлора.

Результатом применения аналитически-численного метода при решении систем ОДУ, описывающих модель динамической системы, являются не только приближенные решения но и области, гарантированно содержащие точные решения.
То есть, кроме самого численного значения приближенного решения в результате получаются и верхние оценки предельной полной погрешности расчета на каждом шаге расчета:



где — приближенное решение (i-я фазовая координата);
— неизвестное точное решение;
— верхняя оценка предельной полной погрешности расчета приближенного решения;


Взяв параметры для расчета из статьи «Динамическая система Лоренца и вычислительный эксперимент»:
Предначальные условия, параметры динамической системы, точность математических операций — 180 знаков после запятой, точность по степенному ряду 1e-9, получим следующий результат в точке t = 6.827:





Значения производных:



Несложно видеть, что результаты расчетов несколько отличаются от изложенных в статье.
Кроме того, если подставить результат из статьи (найденные приближенные значения решений) в исходную систему уравнений, то получим значения производных также отличающихся от указанных в статье:



Отмечу, что повышение точности расчетов (количество учитываемых знаков после запятой и точность по степенному ряду) приводит лишь к сужению области, содержащей точные решения. Например, при задании точности 1e-55, область в точке t = 6.827 сужается до .

Далее, я решил продолжить расчет до точки t = 12.827 и рассмотреть график результатов расчета на фазовых плоскостях z(x):



И y(x):



На графиках четко видно что кривые не замкнуты. Если быть еще точнее, они и на первых графиках не замкнуты, просто масштаб, в котором отображены фазовые траектории, не позволяет увидет точку разомкнутости.

Таким образом, нельзя говорить ни о каком возвращении траектории в окрестность начальной точки — об этом говорится в статье. А делать выводы на основе расчетов необходимо всегда с оглядкой на погрешность вычислений (как методическую так и вычислительную).

Литература:
1. Бычков Ю., Щербаков С. Аналитически-численный метод расчета динамических систем. — Санкт-Петербург: Энергоатомиздат,2001.
Теги:аттрактораттрактор лоренцастепенные рядычисленные методывысокоточные вычислениясистема лоренца
Хабы: Математика
Всего голосов 21: ↑15 и ↓6 +9
Просмотры5.3K

Похожие публикации

Researcher / Data Scientist
от 60 000 до 90 000 ₽Market Research PrimeМожно удаленно
Backend Engineer
от 2 400 $VideolyМожно удаленно
Data Scientist / ML-инженер (Big Data)
до 300 000 ₽МТСМосква
C Разработчик (Embedded)
от 120 000 ₽Flipper Devices Inc.МоскваМожно удаленно

Лучшие публикации за сутки