Комментарии 30
Если это «не смогли зажечь», то что такое «зажечь»?
Классный вопрос. Для ответа надо немножко влезь в детали.
NIF использует т.н. indirect drive, где термоядерная реакция должна возникнуть внутри газа D-T за счет адиабатического сжатия, которое осуществляется коллапсирующей стенкой из льда D-T (в которое должно перейти термоядерное горение из газовой затравки). Это адиабатическое сжатие нагревает очень маленькое количество газа (микрограммы) примерно 10 килоджоулями энергии. Коллапс стенки в свою очередь создается за счет испарения внешней жертвенной оболочки из пластика, которое окружает капсулу льда DT с газом. На испарение уходит около 150 килоджоулей энергии. Испарение жертвенной оболочки обеспечивается рентгеновским излучением в хольрауме (теплоизолирующей капсуле из золота). Рентген в хольрауме создается импульсом передовой лазерной установки, за счет примерно 1,8 мегаджоулей ультрафиолетового лазерного излучения. Для создания этих 1,8 МДж тратится 50 МДж "из розетки".
А теперь возвращаясь к вопросу. Ученые учитывали только последнюю ступень — энергия от термоядерной энергии VS энергия от адиабатического сжатия. Там, действительно, был breakeven. Академик же рассчитывает подняться на пару ступеней, и получать от мишени больше термоядерной энергии, чем вносится лазерным излучением.
Однако все это никакого отношения к энергетики не имеет и используется лишь для моделирования ядерных взрывов.
Лазерные установки относятся к системам инерциального удержания. И повышение точности работы может привести к созданию энергетически выгодных устройств, а в дальнейшем — и электростанций. Да, это сложно, это дорого, это неудобно и пока неэффективно. Но это фундаментальная наука с конкретной моделью применения
Идея УТС (управляемого термоядерного синтеза) не ограничивается токамаками.
Спасибо, что поделились. У меня есть статьи и по мюонному катализу и по ICF. И если бы я не был таким ленивым, то было бы еще куча статей по промежуточным вариантам — например магнитоинерциальный синтез, а-ля MagLIF. Молчу уже про альтернативные виды магнитного удержания, про которые я тоже много написал, см. мои публикации на "Хабре".
И повышение точности работы может привести к созданию энергетически выгодных устройств, а в дальнейшем — и электростанций.
Знаете, точность тут не причем. Да, понятно, что за счет всяких хитростей, Q>1 пытаются получить на 2% энергий от лобового решения (100 МДж в мишени достаточно для зажигания плазмы чисто за счет нагрева). Но экономика этого процесса совершенно чудовищна и не интересна (если хотите, я вам могу описать очевидные проблемы). И то, что во всех странах, где такие установки есть, они строятся в ядерно-оружейных центрах, как мне кажется, просто кричит о их предназначении (не говоря уже, что относительно NIF есть прямые отчеты, сколько у них по военным программам времени — примерно 40%).
Но это фундаментальная наука с конкретной моделью применения
Это, безусловно, фундаментальная наука. Но не энергетика.
И то, что во всех странах, где такие установки есть, они строятся в ядерно-оружейных центрах, как мне кажется, просто кричит о их предназначении (не говоря уже, что относительно NIF есть прямые отчеты, сколько у них по военным программам времени — примерно 40%).
…
Это, безусловно, фундаментальная наука. Но не энергетика.
Если это фундаментальная наука, то без разницы, занимаются ею в военном исследовательском центре или в международном гражданском институте. Знания, полученные в процессе будут, по определению, использоваться и в гражданской, и в военной областях. Секретность военных разработок может замедлить, но не отменить этот процесс.
Но в целом, я спорил прежде всего с тем, что это энергетическая установка или хотя бы переспективная для энергетики.
Знания по горячей плотной плазме, которая получается на подобных установок, разумеется, самоценны по себе, всякая там радиционно-доминированная магнитогидродинамика с подогревом альфа-частицами, ух. Но, увы, у УТС есть вполне себе конкретный количественный критерий — Q, с помощью которого можно измерять прогресс сегодня.
ru.wikipedia.org/wiki/National_Ignition_Facility
«08.10.2013 на установке National Ignition Facility (NIF) была зажжена термоядерная реакция, в ходе которой впервые в мире энергия, выделенная в ходе реакции, превысила энергию, поглощенную мишенью.»
Ссылка из той же статьи в Вики.
www.sciencemag.org/news/2013/10/fusion-breakthrough-nif-uh-not-really
Может кто объяснить, что именно сделали на NIF?
Так, лазеры потребляли электричества на 1.8 МДж, а выход термоядерной реакции был всего 14 кДж. Но при этом созданные за счет этих 1.8 МДж электричества лазерные лучи несли меньше 14 кДж (точнее, в статье сказано, что мишень поглотила меньше 14 кДж, возможно не весь свет сфокусирован или часть отражается от мишени), поэтому с точки зрения физики и мишени это полноценный термоядерный синтез. С выходом больше, чем затраты.
Осталось только научиться делать лазеры с высоким кпд ). Ну или сильнее повышать выход, чтобы он отбил эти потери.
Осталось только научиться делать лазеры с высоким кпд ). Ну или сильнее повышать выход, чтобы он отбил эти потери.
Как я понимаю, пока такая цель не ставится. Речь идет именно об инициировании устойчивой термоядерной реакции с положительным выходом. А оптимизация средств доставки энергии к реактору пока выходит за рамки эксперимента.

Для инерциальных импульсных систем переодически возникают попытки нарисовать "как это можно применить в энергетике", но все обычно пугаются результата.
Консенсус выглядит примерно так — фабрика мишеней, сложнейший механизм, который мишени адски быстро вакуумирует и роняет в центр камеры, куда стреляют лазеры. Вокруг льется жидкий литий, который принимает тепловые нагрузки и генерирует тритий. За импульс можно в самых влажных фантазиях сгенерировать до 10 ГДж (это 2 тонны тнт), и взрывать такое надо раз в несколько секунд. Если отказаться от маловероятной по характеристикам камеры и попробовать работать на мелких мишенях (скажем, 500 мегаджоулей), то очень усложняется механизм запуска мишеней (их теперь надо несколько в секунду) и критичной становится стоимость мишеней.
Как-то так.
Хотя даже просто повторить результат NIF уже будет PROFIT.
Сама идея зажигания термояда таким способом весьма старая, установки, постепенно приближающиеся к цели (хочется в это верить, хотя уверенности нет), строились и раньше.
Что сейчас сделано в Сарове? Это новый шаг вперед? почему? какие проблемы планируется решить?
У меня есть статья о том, что тут происходит на самом деле.
На деле NIF был передовой машиной, но по традиции УТС физика, преподнесла много сюрпризов, и получить несколько мегаджоулей термоядерной энергии из мишени, как было запланировано на NIF не сумели. Сейчас рекорд — около 50 кДж.
УФЛ-2М, которую строят в Сарове будет мощнее по лазерам (2,8 МДж против 1,8 МДж, емпни) и есть все шансы "грубой силой" все же достичь того, что не смог NIF. Но по сути все эти установки военные — они моделируют процессы в термоядерных бомбах, и с помощью них калибруют коды, которые считают эти бомбы. Поэтому режим альфа-подогрева важен, но не критичен, и без него этим установкам есть работа.
P.S. Такая же установка запущена во Франции (Laser Megajoule) и строится в Китае, а так же установка чуть попроще есть у Японии — с учетом плотной связи их с ядерным оружием интересный расклад.
Думаю, ответы про санкции и лазеры будут неожиданные для спрашивающего. Или просто издевательские. Или и то, и другое вместе.
Лазерами этими очень давно занимается ВНИИЭФ при поддержке ИПФ из Нижнего Новгорода и ГОИ. Как не странно, эти ребята весьма передовые на мировом уровне в мощных лазерах, так что надо думать, что по большей части он будет создан в России. Хотя, как обычно, возникают всякие критичные элементы, которые обязательно надо будет протащить контрабандой, ну хотя бы начать с измерительной аппаратуры с временными разрешениями в единицы пикосекунд.
Лишний.
В Сарове установлена лазерная термоядерная установка