459,54
Рейтинг
SkillFactory
Школа Computer Science. Скидка 10% по коду HABR

Как разобраться в дереве принятия решений и сделать его на Python

Блог компании SkillFactoryPythonМатематикаМашинное обучениеИскусственный интеллект
Tutorial
Автор оригинала: Indhumathy Chelliah
Совсем скоро, 20 ноября, у нас стартует новый поток «Математика и Machine Learning для Data Science», и в преддверии этого мы делимся с вами полезным переводом с подробным, иллюстрированным объяснением дерева решений, разъяснением энтропии дерева решений с формулами и простыми примерами, вводом понятия «информационный выигрыш», которое игнорируется большинством умозрительно-простых туториалов. Статья рассчитана на любящих математику новичков, которые хотят больше разобраться в работе дерева принятия решений. Для полной ясности взят совсем маленький набор данных. В конце статьи — ссылка на код на Github.





Дерево решений — тип контролируемого машинного обучения, который в основном используется в задачах классификации. Дерево решений само по себе — это в основном жадное, нисходящее, рекурсивное разбиение. «Жадное», потому что на каждом шагу выбирается лучшее разбиение. «Сверху вниз» — потому что мы начинаем с корневого узла, который содержит все записи, а затем делается разбиение.


Корневой узел — самый верхний узел в дереве решений называется корневой узел.
Узел принятия решения — подузел, который разделяется на дополнительные подузлы, известен как узел принятия решения.

Лист/терминальный узел — узел, который не разделяется на другие узлы, называется терминальный узел, или лист.

Набор данных



Я взяла совсем маленький набор данных, содержащий индекс массы тела (BMI), возраст (Age) и целевую переменную Diabetes (диабет). Давайте спрогнозируем, будет у человека данного возраста и индекса массы тела диабет или нет.

Представление набора данных



На графике невозможно провести какую-то прямую, чтобы определить границу принятия решения. Снова и снова мы разделяем данные, чтобы получить границу решения. Так работает алгоритм дерева решений.


Вот так в дереве решений происходит разбиение.

Важные теоретические определения


Энтропия


Энтропия — это мера случайности или неопределенности. Уровень энтропии колеблется от 0 до 1. Когда энтропия равна 0, это означает, что подмножество чистое, то есть в нем нет случайных элементов. Когда энтропия равна 1, это означает высокую степень случайности. Энтропия обозначается символами H(S).

Формула энтропии


Энтропия вычисляется так: -(p(0) * log(P(0)) + p(1) * log(P(1)))

P(0) → Вероятность принадлежности к класу 0
P(1) → Вероятность принадлежности к классу 1

Связь между энтропией и вероятностью




Когда энтропия равна 0, это означает, что подмножество «чистое», то есть в нем нет энтропии: либо все «да», либо все голоса «нет». Когда она равна 1, то это означает высокую степень случайности. Построим график вероятности P(1) вероятности принадлежности к классу 1 в зависимости от энтропии. Из объяснения выше мы знаем, что:

Если P(1) равно 0, то энтропия равна 0
Если P(1) равно 1, то энтропия равна 0
Если P(1) равно 0,5, то энтропия равна 1


Уровень энтропии всегда находится в диапазоне от 0 до 1.

Информационный выигрыш


Информационный выигрыш для разбиения рассчитывается путем вычитания взвешенных энтропий каждой ветви из исходной энтропии. Используем его для принятия решения о порядке расположения атрибутов в узлах дерева решений.


H(S) → Энтропия
A → Атрибут
S → Множество примеров {x}
V → Возможные значения A
Sv → Подмножество

Как работает дерево решений


В нашем наборе данных два атрибута, BMI и Age. В базе данных семь записей. Построим дерево решений для нашего набора данных.

1. Корневой узел


В дереве решений начнем с корневого узла. Возьмем все записи (в нашем наборе данных их семь) в качестве обучающих выборок.


В корневом узле наблюдаем три голоса за и четыре против.
Вероятность принадлежности к классу 0 равна 4/7. Четыре из семи записей принадлежат к классу 0.
P(0) = 4/7
Вероятность принадлежности к классу 1 равна 3/7. То есть три из семи записей принадлежат классу 1.
P(1) = 3/7.

Вычисляем энтропию корневого узла:


2. Как происходит разбиение?


У нас есть два атрибута — BMI и Age. Как на основе этих атрибутов происходит разбиение? Как проверить эффективность разбиения?

1. При выборе атрибута BMI в качестве переменной разделения и ≤30 в качестве точки разделения мы получим одно чистое подмножество.

Точки разбиения рассматриваются для каждой точки набора данных. Таким образом, если точки данных уникальны, то для n точек данных будет n-1 точек разбиения. То есть в зависимости от выбранных точки и переменной разбиения мы получаем высокий информационный выигрыш и выбираем разделение с этим выигрышем. В большом наборе данных принято считать только точки разделения при определенных процентах распределения значений: 10, 20, 30%. У нас набор данных небольшой, поэтому, видя все точки разделения данных, я выбрала в качестве точки разделения значения ≤30.


Энтропия чистого подмножества равна нулю. Теперь рассчитаем энтропию другого подмножества. Здесь у нас три голоса за и один против.

P(0)=1/4 [одна из четырех записей)
P(1)=3/4 [три из четырех записей)


Чтобы решить, какой атрибут выбрать для разбиения, нужно вычислить информационный выигрыш.


2. Выберем атрибут Age в качестве переменной разбиения и ≤45 в качестве точки разбиения.


Давайте сначала вычислим энтропию подмножества True. У него есть одно да и одно нет. Это высокий уровень неопределенности. Энтропия равна 1. Теперь рассчитаем энтропию подмножества False. В нем два голоса за и три против.

Image for post

3. Рассчитаем информационный выигрыш.

Image for post

Мы должны выбрать атрибут, имеющий высокий информационный выигрыш. В нашем примере такую ценность имеет только атрибут BMI. Таким образом, атрибут BMI выбирается в качестве переменной разбиения. После разбиения по атрибуту BMI мы получаем одно чистое подмножество (листовой узел) и одно нечистое подмножество. Снова разделим это нечистое подмножество на основе атрибута Age. Теперь у нас есть два чистых подмножества (листовой узел).


Итак, мы создали дерево решений с чистыми подмножествами.

Напишем это на Python с помощью sklearn


1. Импортируем библиотеки.

import numpy as np
import pandas as pd 
import matplotlib.pyplot as plt
import seaborn as sns

2. Загрузим данные.

df=pd.read_csv("Diabetes1.csv")
df.head()


3. Разделим переменные на x и y.

Атрибуты BMI и Age принимаются за x.
Атрибут Diabetes (целевая переменная) принимается за y.

x=df.iloc[:,:2]
y=df.iloc[:,2:]

x.head(3)


y.head(3)


4. Построим модель с помощью sklearn

from sklearn import tree
model=tree.DecisionTreeClassifier(criterion="entropy")
model.fit(x,y)

Вывод: DecisionTreeClassifier (criterion=«entropy»)

5. Оценка модели

model.score(x,y)

Вывод: 1.0. Мы взяли очень маленький набор данных, поэтому оценка равна 1.

6. Прогнозирование с помощью модели

Давайте предскажем, будет ли диабет у человека 47 лет с ИМТ 29. Напомню, что эти данные есть в нашем наборе данных.

model.predict([[29,47]])

Вывод: array([‘no’], dtype=object)
Прогноз — нет, такой же, как и в наборе данных. Теперь спрогнозируем, будет ли диабет у человека 47 лет с индексом массы тела 45. Отмечу, что этих данных в нашем наборе нет.

model.predict([[45,47]])

Вывод: array([‘yes’], dtype=object)

Прогноз положительный.

7. Визуализация модели:

tree.plot_tree(model)


Код и набор данных из этой статьи доступны на GitHub.

Приходите изучать математику к нам на курс «Математика и Machine Learning для Data Science» а промокод HABR, добавит 10 % к скидке на баннере.

image



Рекомендуемые статьи


Теги:skillfactorypythonsklearnartificial intelligenceмашинное обучениедеревья решений
Хабы: Блог компании SkillFactory Python Математика Машинное обучение Искусственный интеллект
+18
4,5k 83
Комментировать

Похожие публикации

Лучшие публикации за сутки

Информация

Дата основания
Местоположение
Россия
Сайт
www.skillfactory.ru
Численность
201–500 человек
Дата регистрации

Блог на Хабре