Открыть список
Как стать автором
Обновить

Комментарии 20

Отличный обзор! Спасибо!
Раз уж про питон: маленькая скромная библиотека для сверточных сетей, с интерфейсом scikit-learn (что отдельно ценно), и использованием Cython: nnet.
Спасибо, обязательно посмотрим.
C 'Nvidia CuDNN' пробовали? Caffe, Torch, Theano/Pylearn2 точно поддерживают. Плюс в Theano и PyLearn можно выбрать другую функцию свертки, побыстрей. Но сейчас все в основном используют либу CuDNN, если она есть вналичии. Дает значительный прирост (спасибо ребятам из NVIDIA и товарищу Ле Куну).

А вообще хороший обзор, спасибо.
На данный момент не пробовали. Думаю, что когда начнем работать с более серьезными задачами работать, также придем к ее использованию.
Спасибо!
НЛО прилетело и опубликовало эту надпись здесь
Спасибо!

Это исследовательская работа, которая выполнена инициативной группой студентов ННГУ при поддержке компании ITseez. У нас есть исследовательские задачи, которые были бы интересны ITseez. Поэтому о продакшене внутри нашей группы было бы некорректно говорить, а о продакшене внутри компании у нас не так много информации.
НЛО прилетело и опубликовало эту надпись здесь
1. Ребята сейчас работают над задачей классификации/детектирования лиц. Пробуют восстановить опубликованные в статьях результаты, которые получены с помощью методов глубокого обучения. Надеюсь, что через какое-то время получится опубликовать результаты.

2. Мне казалось, что таких немало, правда, большинство англоязычных.
НЛО прилетело и опубликовало эту надпись здесь
Еще стоит, наверное, вспомнить про недавно выпущенный NVidia DIGITS — обертка над caffe, которая еще больше упрощает использование библиотеки.
>причем на CNN она обогнала саму себя же, запущенную на GPU
похоже у MNIST слишком маленькие картинки, чтобы разгуляться на GPU.

Еще ссылки по теме:

Torch vs Theano
fastml.com/torch-vs-theano

бенчмарк сверточных сетей
github.com/soumith/convnet-benchmarks

оптимизация caffe
plus.google.com/+AndrejKarpathy/posts/N94pSX7wrHL

заметки по GPU железу
timdettmers.wordpress.com/2015/03/09/deep-learning-hardware-guide
Согласна на счет небольшого разрешения картинок в MNIST.

Спасибо за ссылки!
Не знаю, что имеется в виду под «минус возможности AE» в Caffe, но с ним как минимум идет демонстрация автоенкодера для MNIST: mnist_autoencoder.prototxt
Если внимательно посмотреть пример, то автокодировщик в Caffe реализуется «руками» в виде набора стандартных слоев (полносвязные, сигмоидальные и другие), что вполне естественно с точки зрения формирования автокодировщиков. Тем не менее, как таковые встроенные механизмы, упрощающие процедуру создания автокодировщиков, в библиотеке отсутствуют.
CPU: Core 2 Duo E8500
GPU: GeForce GTX 460

Platform: Windows 10
CUDA toolkit: cuda_7.5.18_win10_network.exe

GPU даёт прирост в x15 раз на MNIST.
Только полноправные пользователи могут оставлять комментарии. Войдите, пожалуйста.

Информация

Дата основания
Местоположение
США
Сайт
www.intel.ru
Численность
5 001–10 000 человек
Дата регистрации
Представитель
Виктор Гурылев

Блог на Хабре