Pull to refresh

SamsPcbGuide, часть 8: Как получить правильную осциллограмму

Reading time 7 min
Views 24K
Наверно, все умеют пользоваться осциллографом. Это очень легко – цепляешь «крокодил» к земле, остриё щупа – в необходимую точку измерения, регулируешь масштаб по вертикальной и горизонтальной осям и получаешь временную развёртку напряжения в этой точке. Да, так можно делать, но только если учитывать ряд факторов, о которых пойдёт речь в этой статье. А если не учитывать, то есть вероятность, что полученное на экране осциллографа изображение – бесполезная картинка. И чем меньше его стоимость, тем это более вероятно.

Сразу скажу, что в статье не рассматривается интерфейс управления и возможности типового электронного осциллографа – это относительно несложно и можно найти, например, здесь. Я пишу только о том, что не так просто найти, но легко потерять, особенно на русском языке. При прочтении потребуется знание основных положений теории сигнальных линий, почитать, например, можно в одной из моих предыдущих публикаций.

Я думаю, распространённый сценарий использования осциллографа в цикле разработки печатной платы следующий: если плата не заработала (КЗ, микросхема перегревается, микроконтроллер не прошивается, команды управления не проходят и т.п.), начинаем искать проблему, взяв щуп осциллографа в руки, а если заработала – то и хорошо (рис. 1).


При этом, если разработчик изделия это не радиолюбитель, который все указанные функции выполняет сам, то количество итераций даже до условного «успеха», который заключается в функционировании изделия может возрасти. Поэтому в случае разделения функций, как в случае разработки в рамках организации, разработчику желательно если не самому собирать и отлаживать первые образцы изделий, то, по крайней мере, присутствовать на производстве с целью анализа технологичности разработки.

По моему опыту работы, для первых образцов изделий гораздо более эффективной является поблочная сборка, начиная с подсистемы питания, с контролем электрических параметров подсистем (рис. 2).



При таком подходе сужается область поиска неисправности, так как она может возникать только во вновь собранном блоке или при взаимодействии этого блока с уже проверенными. Контроль электрических параметров гарантирует то, что изделие не просто корректно функционирует, а что все или основные электрические сигналы соответствуют ожидаемому поведению. В таком случае «успех» уже более основательный, и можно переходить к полному циклу испытаний при требуемых внешних воздействиях.

Вернёмся к использованию осциллографов. При описании их места в разработке печатных плат был неявно сформулирован важный принцип измерений (и измерений с помощью осциллографа в частности), о котором часто в своих лекциях говорит Эрик Богатин.

До момента измерения необходимо иметь представление о его ожидаемом результате. В случае совпадения ожиданий и реальности можно говорить о правильной модели процесса, в случае значительного несовпадения – либо о необходимости перепроверки ожидаемых параметров (получаемых с помощью прямых аналитических расчётов, результатов моделирования или на основании опыта), либо о некорректном измерении, либо о некорректном функционировании изделия.

В контексте темы публикации стоит обратить внимание на вариант некорректного измерения. При измерениях с помощью осциллографа как нигде ещё применим «эффект наблюдателя» из квантовой физики, когда наличие наблюдателя влияет на наблюдаемый процесс. На экране осциллографе можно такое пронаблюдать, что к реальности не будет иметь никакого отношения. Разбираемся, как это не допустить.

Начнём с формулировки идеального конечного результата: пронаблюдать на экране осциллографа временную развёртку напряжения в определённой точке сигнальной линии в заданный момент времени без внесения искажений. Пускай имеется идеальный быстродействующий осциллограф с бесконечной полосой пропускания, обеспечивающий аналого-цифровое преобразование с требуемым уровнем разрешения. Тогда для решения задачи потребуется передача сигнала от точки на печатной плате до коаксиального входа осциллографа, удовлетворяющая следующим условиям:

  1. Обеспечивается стабильный механический контакт с нулевым контактным сопротивлением в точках контакта. Их две, обе равнозначные: одна обеспечивает путь для прямого тока, другая – для возвратного.
  2. Сформированная сигнальная линия не должна нагружать измеряемую сигнальную цепь, то есть должна иметь бесконечный импеданс.
  3. Сформированная сигнальная линия не должна вносить искажений в измеряемый сигнал, то есть должна иметь плоскую передаточную функцию в бесконечной полосе частот и линейную фазовую характеристику.
  4. Сформированная сигнальная линия не должна вносить собственных помех в измеряемый сигнал, а также должна быть идеально защищена от внешних помех.

Конечно, в общем случаев эти условия не реализуемы, однако формулировка идеального конечного результата полезна при анализе задачи. Она, в частности, даёт понимание того, что реальная измерительная система имеет ограничения, сужающие область достоверных измерений.

На рис. 3 изображена эквивалентная схема измерительной цепи с использованием наиболее распространённого типа щупа «1X/10X», который в большинстве случаев входит с стандартный комплект осциллографа.


Сопротивление щупа в положении «10X» по постоянному току составляет около 9 МОм – это последовательно включённый резистор, который образует с входным сопротивлением осциллографа 1 МОм делитель напряжения 1:10. Отсюда и название щупа «10X», который в этом режиме уменьшает измеряемый сигнал в 10 раз (а наводки и привнесённые системой шумы шумы — нет). В положении переключателя «1X» этот резистор закорачивается и сопротивление щупа – это сопротивление коаксиального кабеля щупа. Рекомендую измерить это сопротивление – от кончика щупа до центрального контакта BNC-разъёма – и убедиться, что оно не «нулевое», как у обычного 50-омного коаксиального кабеля, а составляет несколько сотен Ом. Если разрезать кабель (рис. 4), то можно увидеть тонкий нихромовый проводник, окружённый вспененным изолирующим материалом с низкой диэлектрической проницаемостью εr ~ 1. Это линия с потерями, т.е. кабель спроектирован таким образом, чтобы ослабить высокочастотные отражения, возникающие в связи с несогласованностью измерительной сигнальной линии.


Подстроечный конденсатор CEQ1 предназначен для компенсации в режиме «10X» полюса фильтра нижних частот (рис. 5) с частотой среза порядка всего 1,5 кГц! Теперь должно быть понятно, почему эта компенсация необходима. Подстроечный конденсатор иногда располагается не в рукояти щупа, а на дальнем конце, у соединительного разъёма – тогда CEQ1 фиксированного номинала ~15 пФ, а подстройка осуществляется конденсатором CEQ2. Индуктивность LP – это индуктивность петли возвратного тока.


С учётом сказанного выше можно получить рабочую модель измерительной цепи осциллографа для положений переключателя «10X» и «1X». Численные значения параметров должны браться из документации на соответствующие щупы и осциллографы. При этом, скорее всего, параметры различных производителей не должны значительно отличаться для заданной полосы пропускания. В представленных на рис. 6 и 7 моделях LTSpice использовались данные на осциллограф TDS2024B и щуп P2200.



Важно понимать, что эти модели являются упрощёнными и не учитывают всех паразитных параметров, поэтому точных значений полосы пропускания они не дают. Однако они дают качественное представление о влиянии тех или иных параметров при измерении. Например, первые результаты, на которые стоит обратить внимание это то, что:

1. Полоса пропускания щупа в режиме «1X» более чем на порядок меньше, чем в режиме «10X» и составляет порядка 6…8 МГц. Это соответствует минимальной измеримой длительности фронта сигнала tR = 0,35 / BWPROBE ~ 45…55 нс. Преимуществом режима «1X» является увеличенное на 20 дБ отношение сигнал/шум, так как при том же уровне помех измерительной системы сигнал на входе осциллографа больше в 10 раз.

2. Увеличение индуктивности петли возвратного тока снижает полосу пропускания. Именно поэтому при измерении высокочастотных сигналов для обеспечения возвратного тока рекомендуется использовать не «крокодил» с индуктивностью ~200 нГн, а специальную насадку на щуп, на порядок снижающую значение индуктивности (рис. 8).

3. Влияние подстроечного конденсатора в режиме «10X» на передаточную функцию нарастает, начиная с частот 200…300 Гц, до максимума на частотах в 2…3 кГц. Именно поэтому в качестве калибровочного сигнала на осциллографах обычно используется сигнал с тактовой частотой 1 кГц, фронты которого искажаются при подстройке (рис. 9). Полезная привычка – выполнять подстройку как при смене щупа или канала осциллографа, так и периодически перед проведением измерений.


Помимо электрических характеристик щупа и входной цепи осциллографа в модель на рис. 3 как параметры входят следующие величины: напряжение источника сигнала – его спектр, выходное сопротивление источника RS, импеданс сигнальной линии Z0, импеданс нагрузки ZLOAD – именно импеданс, с учётом емкостной составляющей. Эти и другие параметры представлены в таблице 1, именно они определяют достоверность результатов измерения. Основной критерий заключается в том, чтобы исследуемая часть спектральной полосы сигнала входила в полосу пропускания системы «щуп + осциллограф», при этом амплитуда сигнала не превышала допустимых значений (это особенно важно в случае, когда входное сопротивление осциллографа составляет 50 Ом). Остальное: захват сигнала и измерение его параметров – дело техники.


Последний момент, на котором хочется остановиться – это полоса пропускания системы «щуп + осциллограф». Тут стоит избегать заблуждения, заключающегося в том, что если взять осциллограф и щуп с полосой пропускания 150 МГц, то полоса пропускания измерительной системы будет 150 МГц (это так только при наличии программной компенсации). Кроме того, тот факт, что на щупе «написано» 150 МГц, не всегда означает, что это реальные 150 МГц. Поэтому рекомендую с помощью генератора синусоидального сигнала экспериментально исследовать полосу пропускания. Частота, на которой амплитуда сигнала уменьшиться до 0,707 от значения на низких частотах, это и будет нужное значение. При этом стоит обратить внимание на то, есть ли локальные максимумы в передаточной функции. Я это проделал с помощью генератора Г4-107 для нескольких измерительных систем, при этом использовалось соединение с помощью «пружинки» (рис. 10). Перед каждым измерением выполнялась компенсация, при этом всегда приходилось делать подстройку, хоть и небольшую. Также проводились измерения без щупа с помощью короткого 50-омного коаксиального BNC-кабеля. Результаты представлены в таблице 2. Удивил щуп PP510 с заявленной полосой в 100 МГц.



В общем, если подводить итог, то хочется сказать, что следует внимательно относиться к измерениям с помощью осциллографа, и в качестве опоры использовать корреляцию между ожидаемыми и полученными результатами. Что касается области более высоких частот, то для измерения сигналов, полоса пропускания которых превышает 500 МГц, пассивные щупы типа «1X/10X» не применимы. Для этого используют прямое коаксиальное соединение при 50-омном входе осциллографа или активные щупы, ещё больше минимизируют индуктивность соединения (в т. ч. за счёт использование паяных соединений, размещения на плате миниатюрных коаксиальных разъёмов и т.п.). Тема очень широкая – есть изолированные осциллографы, изолированные щупы, дифференциальные и специализированные щупы, но всё это уже отдельный разговор, выходящий за рамки данной статьи.

P.S. Этот материал прежде нигде не публиковался, жду обратной связи. После этого статья, возможно, в чуть более подробном виде, вместе с материалом по высоковольтной изоляции войдёт в качестве приложения в полную версию книги в обновлённом релизе. Точных измерений, народ!
Tags:
Hubs:
If this publication inspired you and you want to support the author, do not hesitate to click on the button
+40
Comments 55
Comments Comments 55

Articles