Алгоритмы
Машинное обучение
Обработка изображений
Читальный зал
Комментарии 25
+13
компания Robin Video использует Super Resolution для улучшения качества изображения в облачном видеонаблюдении, чтобы клиенты использовали более простые и дешёвые камеры с сохранением качества картинки
Надеюсь, без нейросетей? Будет не очень хорошо, если на видеозаписи преступления вдруг окажется «додуманный» нейросетью номер машины или лицо человека (как у копировальных аппаратов, которые при сохранении в формат JBIG2 подменяли «похожие» цифры).
+1
Ну-с, не должны же фото с обработкой, пусть и мега заточенным инструментом под улучшение изображения, допускаться в суд, заяву, официальный документ в качестве доказательства. Для того что бы такое вошло в обиход нужны стандарты, изучить процент погрешности и т.д.
+1
Ага, типичная ошибка. Алгоритмы повышения разрешения изображений не способны восстановить информацию, которая была потеряна из-за хреновой камеры. Зато они могут сделать изображение приятным человеческому глазу.

Есть ещё технология многокадрового супер-разрешения (раньше, кстати, под Super-Resolution понимали только многокадровый подход, потом термин исказился) — там за счёт игр с алиасингом можно вытащить реальную высокочастотную информацию из видеопоследовательности. Но есть жёсткое ограничение: только grayscale камеры и применение алгоритмов супер-разрешения до компрессии, т.к. компрессия за счёт разностного кодирования уничтожает дополнительную информацию для восстановления данных.
+3

Низкочастотный фильтр аппроксимирует сигнал — изображение на основе проекции в линейное ортогональное пространство (обобщённо говоря). Описанный в статье метод является НЕЛИНЕЙНЫМ поиском подобия с принятием разностного решения нейронной сетью. Я работал с подобной технологией на основе фрактальных преобразований — там так-же требуется установить подобие, но уже глобальное — для всего изображения — можете ознакомиться с постом: https://habr.com/post/309906/

0
А уже есть нейросети, чтобы убирать водяные знаки с фотографий?
0
А есть ли в публичном доступе реализация какого-нибудь из подобных методов? Хотелось бы помучать и посмотреть, что оно даёт на реальных картинках.
+1
Сам задался этим вопросом, из того что нашел — waifu2x.
Работает, кстати, неплохо, но если увеличивать изображение несколько раз, то оно будет «замылено» (что, в общем-то, ожидаемо).
0

кстати, нашёл что-то похожее на методику из 2-й статьи. Для меня пока сложновато в этом разобраться. Если кто-то запустит, поделитесь впечатлением)

0
Когда начнут пираты обрабатывать старые рисованные мультики, чтобы увеличить разрешение для них?
0
А вот когда начнут обрабатывать старую душевную порнуху с VHS?
0
Часто на дешевых камерах только охранник может понять достоверно кто это был:).
+4
У меня дешевый тепловизор использует «улучшение» термократины чтобы изображение имело большее разрешение. Очень красивые картинки. И он видит то, чего нет. В первую очередь градиент там, где его быть не может.
Убил бы тех, кто придумал такое улучшение. Один вопрос — НАХРЕНА????
0

Интересно было бы попробовать для старых фоток метод из 2-й статьи "восстановление испорченных изображений". Конечно, без специальных знаний в оригиналах статей разобраться очень сложно. Интересно, есть ли такое открытое решение? На github нашёл пока пару решений просто для "super resolution"

+1
Сплошная вода, уже 10 лет такие «анонсы» вижу, где реальные инструменты? Где реальный анализ видеопоследовательности, а не одного кадра? Где ссылки на опыт яндекса и его реставрированные фильмы?
Только полноправные пользователи могут оставлять комментарии. , пожалуйста.