Pull to refresh
92
-23.8
Вячеслав @petuhoff

Моделирование сложных технических систем

Send message

9 Синтез и коррекция систем автоматического регулирования (САР)

Reading time14 min
Views2.2K

Продолжаем публикацию лекций по предмету "Управление в технических системах". Кафедра "Ядерные энергетические установки" МГТУ им. Н.Э. Баумана. Автор: Олег Степанович Козлов.

1. Введение в теорию автоматического управления.2. Математическое описание систем автоматического управления 2.1 — 2.32.3 — 2.82.9 — 2.13

3. Частотные характеристики звеньев и систем автоматического управления регулирования. 3.1. Амплитудно-фазовая частотная характеристика: годограф, АФЧХ, ЛАХ, ФЧХ3.2. Типовые звенья систем автоматического управления регулирования. Классификация типовых звеньев. Простейшие типовые звенья3.3. Апериодическое звено 1–го порядка инерционное звено. На примере входной камеры ядерного реактора3.4. Апериодическое звено 2-го порядка3.5. Колебательное звено3.6. Инерционно-дифференцирующее звено3.7. Форсирующее звено.  3.8. Инерционно-интегрирующее звено (интегрирующее звено с замедлением)3.9. Изодромное звено (изодром)3.10 Минимально-фазовые и не минимально-фазовые звенья3.11 Математическая модель кинетики нейтронов в «точечном» реакторе «нулевой» мощности

4. Структурные преобразования систем автоматического регулирования.

5. Передаточные функции и уравнения динамики замкнутых систем автоматического регулирования (САР).

6. Устойчивость систем автоматического регулирования. 6.1 Понятие об устойчивости САР. Теорема Ляпунова. 6.2 Необходимые условия устойчивости линейных и линеаризованных САР. 6.3 Алгебраический критерий устойчивости Гурвица. 6.4 Частотный критерий устойчивости Михайлова. 6.5 Критерий Найквиста.

Читать далее
Total votes 10: ↑9 and ↓1+8
Comments0

Полиномиальные корневые методы синтеза САУ ч.3 (заключение)

Level of difficultyMedium
Reading time12 min
Views1.5K

Леонид Маркович Скворцов. Широко известный в узких кругах математик, профессионально занимающийся математическими проблемами автоматического управления. Например, его авторские методы использованы в SimInTech. Данный текст, еще готовится к публикации. Но с разрешения автора, читатели Хабр будут первыми кто сможет оценить. Первая часть здесь... Вторая часть здесь...

Две предыдущие части были заполнены многоэтажными формулами в третей части разберем на примерах применение этих формул. Математику в жизнь!

Приведем примеры и покажем в видео как синтезировать регулятор для линейной модели двухроторного газотурбинного двигателя, работающего на базовом режиме малого газа, вместе с исполнительным механизмом. От теории к практике не приходя в сознание!

Читать далее
Total votes 11: ↑11 and ↓0+11
Comments2

Полиномиальные корневые методы синтеза САУ ч.2

Level of difficultyMedium
Reading time17 min
Views1.9K

Леонид Маркович Скворцов. Широко известный в узких кругах математик, профессионально занимающийся математическими проблемами автоматического управления. Например, его авторские методы использованы в SimInTech. Данный текст, еще готовится к публикации. Но с разрешения автора, читатели Хабр будут первыми кто сможет оценить. Первая часть здесь...

Читать далее
Total votes 4: ↑3 and ↓1+2
Comments2

Качество переходного процесса ч.2

Reading time8 min
Views2.3K

Продолжаем публикацию лекций Олега Степановича Козлова с кафедры Ядерные Энергетические Установки МГТУ им. Баумана. Вторая часть лекции про качество САР и модель реактора как бонус.

В предыдущих сериях:

1. Введение в теорию автоматического управления.2. Математическое описание систем автоматического управления 2.1 — 2.32.3 — 2.82.9 — 2.13

3. Частотные характеристики звеньев и систем автоматического управления регулирования. 3.1. Амплитудно-фазовая частотная характеристика: годограф, АФЧХ, ЛАХ, ФЧХ3.2. Типовые звенья систем автоматического управления регулирования. Классификация типовых звеньев. Простейшие типовые звенья3.3. Апериодическое звено 1–го порядка инерционное звено. На примере входной камеры ядерного реактора3.4. Апериодическое звено 2-го порядка3.5. Колебательное звено3.6. Инерционно-дифференцирующее звено3.7. Форсирующее звено.  3.8. Инерционно-интегрирующее звено (интегрирующее звено с замедлением)3.9. Изодромное звено (изодром)3.10 Минимально-фазовые и не минимально-фазовые звенья3.11 Математическая модель кинетики нейтронов в «точечном» реакторе «нулевой» мощности

4. Структурные преобразования систем автоматического регулирования.

5. Передаточные функции и уравнения динамики замкнутых систем автоматического регулирования (САР).

6. Устойчивость систем автоматического регулирования. 6.1 Понятие об устойчивости САР. Теорема Ляпунова. 6.2 Необходимые условия устойчивости линейных и линеаризованных САР. 6.3 Алгебраический критерий устойчивости Гурвица. 6.4 Частотный критерий устойчивости Михайлова. 6.5 Критерий Найквиста.

7. Точность систем автоматического управления. Часть 1 и Часть 2

8. Качество переходного процесса ч.1

Читать далее
Total votes 14: ↑14 and ↓0+14
Comments4

Полиномиальные корневые методы синтеза САУ ч.1

Level of difficultyMedium
Reading time14 min
Views6.4K

Ленонид Маркович Скворцов. Широко известный в узких кругах математик, профессионально занимающийся математическами проблемами автоматического управления. Например, его авторские методы использованы в SimInTech. Данный текст первая часть работы, которая еще готовится к публикации. Но с разрешения автора, читатели Хабр будут превыми кто сможет с ним ознакомится.

Все мы слышали, про преимущества советской математической школы над зарубежными математическими школами, но мало кто видел это приимущество в реальных задачах. В случае математических методов Леонида Марковича Скворцова, математика это не просто абстрактные формулы, а решение реальных прикладных задач, все можно увидеть пощупать и попробовать. В конце статьи видео-доказательство, практичесокй реализации преимуществ методов Леонида Марковича на практике.

Читать далее
Total votes 24: ↑23 and ↓1+22
Comments5

8. Качество переходного процесса ч.1

Level of difficultyMedium
Reading time8 min
Views3.1K

В предыдущих сериях:

1. Введение в теорию автоматического управления.2. Математическое описание систем автоматического управления 2.1 — 2.32.3 — 2.82.9 — 2.13

3. ЧАСТОТНЫЕ ХАРАКТЕРИСТИКИ ЗВЕНЬЕВ И СИСТЕМ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ РЕГУЛИРОВАНИЯ. 3.1. Амплитудно-фазовая частотная характеристика: годограф, АФЧХ, ЛАХ, ФЧХ3.2. Типовые звенья систем автоматического управления регулирования. Классификация типовых звеньев. Простейшие типовые звенья3.3. Апериодическое звено 1–го порядка инерционное звено. На примере входной камеры ядерного реактора3.4. Апериодическое звено 2-го порядка3.5. Колебательное звено3.6. Инерционно-дифференцирующее звено3.7. Форсирующее звено.  3.8. Инерционно-интегрирующее звено (интегрирующее звено с замедлением)3.9. Изодромное звено (изодром)3.10 Минимально-фазовые и не минимально-фазовые звенья3.11 Математическая модель кинетики нейтронов в «точечном» реакторе «нулевой» мощности

4. Структурные преобразования систем автоматического регулирования.

5. Передаточные функции и уравнения динамики замкнутых систем автоматического регулирования (САР).

6. Устойчивость систем автоматического регулирования. 6.1 Понятие об устойчивости САР. Теорема Ляпунова. 6.2 Необходимые условия устойчивости линейных и линеаризованных САР. 6.3 Алгебраический критерий устойчивости Гурвица. 6.4 Частотный критерий устойчивости Михайлова. 6.5 Критерий Найквиста.

7. Точность систем автоматического управления. Часть 1 и Часть 2

Читать далее
Total votes 15: ↑14 and ↓1+13
Comments1

Как я чуть не стал миллионером, продавая воздух, или почему Россия – не Америка

Level of difficultyEasy
Reading time10 min
Views114K

Все знают, что Россия — энергетическая сверхдержава, она же – «разорванная в клочья Обамой бензоколонка». Но не все знают, как это может отражаться в области развития математического моделирования. Расскажу одну жизненную историю. 

Начну с далекого 2007 года. Довелось мне в те времена поработать на крупном заводе, который «эффективные менеджеры» как раз делили на несколько отдельных предприятий, каждое из которых крутилось, как могло.  В том цеху, который и стал одним из таких предприятий, на токарных станках могла крутиться (и крутилась!) металлическая болванка размером с автобус. А в печку для нагрева металла можно было затолкать паровоз. Целиком.  Когда я в первый раз увидел токарный станок, на котором крутится и обтачивается деталь размером с автобус, моему восторгу не было предела. Гордость за страну переполняла до состояния «в зобу дыханье сперло». А потом старожилы показали ту часть цеха, где стояли фундаменты таких же станков и пояснили:

- А вот тут были станки для точной обработки. Их продали китайцам по цене металлолома.

- А почему вот другие не продали?

- Потому, что у них точность обработки такая, что их только в металлолом можно сдать. Поэтому они здесь работают и крутятся как могут, и обтачивают валы турбин Siemiens.

Схема бизнеса был гениальна: Siemiens привозил на завод многотонные болванки, их неделями и месяцами обтачивали до состояния заготовок и увозили для чистовой обработки в Германию. Где уже выполняли чистовую доводку на точных и дорогих станках. Главные затраты при черновой обработке – это износ станков и инструмента, зарплата токаря и электроэнергия, необходимая для вращения тонн металла. Поскольку электроэнергия в РФ дешевле немецкой, недели обработки болванок с лихвой окупают транспортировку, а низкая точность обработки не требует дорогого обслуживания и мало чувствительна к износу еще советского оборудования.  В итоге весь бизнес заключался в «перепродаже» дешевой электроэнергии из РФ в Германию, но в виде металлических обточенных болванок. 

Читать далее
Total votes 293: ↑284 and ↓9+275
Comments301

Апология ИИ. Cуд

Level of difficultyEasy
Reading time14 min
Views1.6K

Пьеса в трех актах. Акт 1.

399 год с апокалипсиса, подземный бункер.

Действующие лица:

Сократ - ИИ

Платон – 60 лет, главный создатель ИИ 

Деймона – 35 лет, жена Платона 

Анит – 30 лет, хранитель мира между полисами

Мелет –30 лет, главный торговый представитель полиса 

Биос – 50 лет, глава суда присяжных 

Дедал – 50 лет, главный инженер 

Аполлодор – 20 лет, слушатель Сократа

Херомонт –20 лет, свидетель по делу Сократ

Читать далее
Total votes 14: ↑7 and ↓70
Comments15

7. Точность систем автоматического регулирования (ч. 2)

Level of difficultyMedium
Reading time7 min
Views4.3K

Продолжаем публикацию лекций Олега Степановича Козлова по предмету "Управление в Технических Системах".

В этой лекции мы продолжим разбираться с точностью, но сначала краткое содержание предыдущих серий:

1. Введение в теорию автоматического управления.2. Математическое описание систем автоматического управления 2.1 — 2.32.3 — 2.82.9 — 2.13

3. ЧАСТОТНЫЕ ХАРАКТЕРИСТИКИ ЗВЕНЬЕВ И СИСТЕМ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ РЕГУЛИРОВАНИЯ. 3.1. Амплитудно-фазовая частотная характеристика: годограф, АФЧХ, ЛАХ, ФЧХ3.2. Типовые звенья систем автоматического управления регулирования. Классификация типовых звеньев. Простейшие типовые звенья3.3. Апериодическое звено 1–го порядка инерционное звено. На примере входной камеры ядерного реактора3.4. Апериодическое звено 2-го порядка3.5. Колебательное звено3.6. Инерционно-дифференцирующее звено3.7. Форсирующее звено.  3.8. Инерционно-интегрирующее звено (интегрирующее звено с замедлением)3.9. Изодромное звено (изодром)3.10 Минимально-фазовые и не минимально-фазовые звенья3.11 Математическая модель кинетики нейтронов в «точечном» реакторе «нулевой» мощности

4. Структурные преобразования систем автоматического регулирования.

5. Передаточные функции и уравнения динамики замкнутых систем автоматического регулирования (САР).

6. Устойчивость систем автоматического регулирования. 6.1 Понятие об устойчивости САР. Теорема Ляпунова. 6.2 Необходимые условия устойчивости линейных и линеаризованных САР. 6.3 Алгебраический критерий устойчивости Гурвица. 6.4 Частотный критерий устойчивости Михайлова. 6.5 Критерий Найквиста.

7. Точность системы автоматического управления (ч.1)

Читать далее
Total votes 14: ↑14 and ↓0+14
Comments13

MATLAB Simulink и SimInTech на MacBook Pro M2 Max

Level of difficultyEasy
Reading time13 min
Views4.1K

Абсолютно дилетантское сравнение MacBooк на процессоре Apple M2 Max с другими хорошими компьютерами.

Процессор MacBooк на процессоре M2, доступен уже достаточно давно. Обзоров производительности уже достаточно много. Но вот тестирование на производительности на специализированные инженерные задачи, а в частности использования средств структурного моделирования, типа MATLAB, Simulink (не говоря уже о SimInTech) я не нашел даже на английском. 

Поэтому будем тестировать. Я как старый яблодрочер, буду сравнивать Mac c Mac-ом, а так же возьму случайно оказавшийся на руках новый ноутбук от  ASUS  на процессоре AMD.

В наличие есть:

MacBook c процессром Apple M2 Max 3.5 ГГц c 32 Гб памяти на борту.

Apple iMac настольный с Intel Core i7 10 поколения 3.8 ГГц 2020 года.

Ноутбук ASUS AMD Ryzen 7 5800 3.20 ГГц

Читать далее
Total votes 8: ↑8 and ↓0+8
Comments14

7. Точность систем автоматического регулирования (ч.1)

Level of difficultyMedium
Reading time7 min
Views6.4K

Продолжаем публиковать лекции Олега Степановича Козлова по предмету управление в технических системах. В этой лекции займемся точностью. Предыдушие части:

1. Введение в теорию автоматического управления.2. Математическое описание систем автоматического управления 2.1 — 2.32.3 — 2.82.9 — 2.13

3. Частотные характеристики звеньев и систем автоматического управления регулирования. 3.1. Амплитудно-фазовая частотная характеристика: годограф, АФЧХ, ЛАХ, ФЧХ3.2. Типовые звенья систем автоматического управления регулирования. Классификация типовых звеньев. Простейшие типовые звенья3.3. Апериодическое звено 1–го порядка инерционное звено. На примере входной камеры ядерного реактора3.4. Апериодическое звено 2-го порядка3.5. Колебательное звено3.6. Инерционно-дифференцирующее звено3.7. Форсирующее звено.  3.8. Инерционно-интегрирующее звено (интегрирующее звено с замедлением)3.9. Изодромное звено (изодром)3.10 Минимально-фазовые и не минимально-фазовые звенья3.11 Математическая модель кинетики нейтронов в «точечном» реакторе «нулевой» мощности

4. Структурные преобразования систем автоматического регулирования.

5. Передаточные функции и уравнения динамики замкнутых систем автоматического регулирования (САР).

6. Устойчивость систем автоматического регулирования. 6.1 Понятие об устойчивости САР. Теорема Ляпунова. 6.2 Необходимые условия устойчивости линейных и линеаризованных САР. 6.3 Алгебраический критерий устойчивости Гурвица. 6.4 Частотный критерий устойчивости Михайлова. 6.5 Критерий Найквиста.

Читать далее
Total votes 15: ↑13 and ↓2+11
Comments9

6. Устойчивость систем автоматического управления. 6.6 Понятие об областях устойчивости

Level of difficultyMedium
Reading time12 min
Views7.6K

Продолжаем публикацию лекций Олега Степановича Козлова по предмету "Управление в Технических Системах".

В этой лекции мы покажем как наши деды без компьютрера и "цифровых двойников" строили ракеты и отправляли человека в космос. Но сначала краткое содержание предыдущих серий:

1. Введение в теорию автоматического управления.2. Математическое описание систем автоматического управления 2.1 — 2.32.3 — 2.82.9 — 2.13

3. ЧАСТОТНЫЕ ХАРАКТЕРИСТИКИ ЗВЕНЬЕВ И СИСТЕМ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ РЕГУЛИРОВАНИЯ. 3.1. Амплитудно-фазовая частотная характеристика: годограф, АФЧХ, ЛАХ, ФЧХ3.2. Типовые звенья систем автоматического управления регулирования. Классификация типовых звеньев. Простейшие типовые звенья3.3. Апериодическое звено 1–го порядка инерционное звено. На примере входной камеры ядерного реактора3.4. Апериодическое звено 2-го порядка3.5. Колебательное звено3.6. Инерционно-дифференцирующее звено3.7. Форсирующее звено.  3.8. Инерционно-интегрирующее звено (интегрирующее звено с замедлением)3.9. Изодромное звено (изодром)3.10 Минимально-фазовые и не минимально-фазовые звенья3.11 Математическая модель кинетики нейтронов в «точечном» реакторе «нулевой» мощности

4. Структурные преобразования систем автоматического регулирования.

5. Передаточные функции и уравнения динамики замкнутых систем автоматического регулирования (САР).

6. Устойчивость систем автоматического регулирования. 6.1 Понятие об устойчивости САР. Теорема Ляпунова. 6.2 Необходимые условия устойчивости линейных и линеаризованных САР. 6.3 Алгебраический критерий устойчивости Гурвица. 6.4 Частотный критерий устойчивости Михайлова. 6.5 Критерий Найквиста.

После этой лекции, даже не имея компьютера, а только милиметровую бумагу вы сможете рассчитать устойчивость любых САР.

Читать далее
Total votes 10: ↑9 and ↓1+8
Comments0

6. Устойчивость систем автоматического регулирования. 6.5. Частотный критерий Найквиста

Level of difficultyMedium
Reading time11 min
Views8.6K

Продолжаем разбиратся теорией автоматического управления, по лекциям Олега Степановаича Козлова, "Управление в технических системах". Сейчас у нас будет годограф Найквиста.

Читать далее
Total votes 5: ↑5 and ↓0+5
Comments0

6.4 Устойчивость систем автоматического регулирования. Частотный критерий устойчивости Михайлова

Reading time6 min
Views8.9K

Продолжаем лекции по управлению в технических устройствах (УТС). Данные лекции читаются в МГУТ им. Баумана. Автор лекций к.т.н. Козлов Олег Степанович, кафедра Ядерные Энергетические Установки, факультета машиностроения. За что ему огромное спасибо!

1. Введение в теорию автоматического управления.2. Математическое описание систем автоматического управления 2.1 — 2.32.3 — 2.82.9 — 2.13

3. ЧАСТОТНЫЕ ХАРАКТЕРИСТИКИ ЗВЕНЬЕВ И СИСТЕМ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ РЕГУЛИРОВАНИЯ. 3.1. Амплитудно-фазовая частотная характеристика: годограф, АФЧХ, ЛАХ, ФЧХ3.2. Типовые звенья систем автоматического управления регулирования. Классификация типовых звеньев. Простейшие типовые звенья3.3. Апериодическое звено 1–го порядка инерционное звено. На примере входной камеры ядерного реактора3.4. Апериодическое звено 2-го порядка3.5. Колебательное звено3.6. Инерционно-дифференцирующее звено3.7. Форсирующее звено.  3.8. Инерционно-интегрирующее звено (интегрирующее звено с замедлением)3.9. Изодромное звено (изодром)3.10 Минимально-фазовые и не минимально-фазовые звенья3.11 Математическая модель кинетики нейтронов в «точечном» реакторе «нулевой» мощности

4. Структурные преобразования систем автоматического регулирования.

5. Передаточные функции и уравнения динамики замкнутых систем автоматического регулирования (САР).

6. Устойчивость систем автоматического регулирования. 6.1 Понятие об устойчивости САР. Теорема Ляпунова. 6.2 Необходимые условия устойчивости линейных и линеаризованных САР. 6.3 Алгебраический критерий устойчивости Гурвица.

Читать далее
Total votes 19: ↑18 and ↓1+17
Comments6

6 Устойчивость систем автоматического регулирования. Теоремы Ляпунова. Критерий устойчивости Гурвица

Reading time9 min
Views23K

Продолжаем лекции по управлению в технических системах предыдущие части:

1. Введение в теорию автоматического управления.2. Математическое описание систем автоматического управления 2.1 — 2.32.3 — 2.82.9 — 2.13.

3. ЧАСТОТНЫЕ ХАРАКТЕРИСТИКИ ЗВЕНЬЕВ И СИСТЕМ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ РЕГУЛИРОВАНИЯ. 3.1. Амплитудно-фазовая частотная характеристика: годограф, АФЧХ, ЛАХ, ФЧХ3.2. Типовые звенья систем автоматического управления регулирования. Классификация типовых звеньев. Простейшие типовые звенья3.3. Апериодическое звено 1–го порядка инерционное звено. На примере входной камеры ядерного реактора3.4. Апериодическое звено 2-го порядка3.5. Колебательное звено3.6. Инерционно-дифференцирующее звено3.7. Форсирующее звено.  3.8. Инерционно-интегрирующее звено (интегрирующее звено с замедлением)3.9. Изодромное звено (изодром)3.10 Минимально-фазовые и не минимально-фазовые звенья3.11 Математическая модель кинетики нейтронов в «точечном» реакторе «нулевой» мощности.

4. Структурные преобразования систем автоматического регулирования.

5. Передаточные функции и уравнения динамики замкнутых систем автоматического регулирования (САР).

Теперь перейдем к устойчивости!

Читать далее
Total votes 22: ↑22 and ↓0+22
Comments10

Беги муравей, беги! Ремейк 2022

Reading time22 min
Views4.2K

На написание этой статьи меня сподвигла одноименная статья на хабре: "Беги, муравей. Беги". В ней рассматривается решение задачи коммивояжёра  в среде AnyLogic.

О самой задаче можно почитать здесь:  Задача коммивояжёра.  

Если кратко, то задача сводится к нахождению самого короткого пути обхода набора точек (городов) на карте. Решение методом перебора не является эффективным, поскольку количество вычислений огромно. Например, для 15 точек существует 43 миллиарда маршрутов, а для 18 точек (городов) уже 117 триллионов!!!

AnyLogic – среда, предназначенная для решения логистических задач с использованием моделей агентов. Мне показалось интересным, что несмотря на «заточенность» среды на агентное моделирование, при создании модели приходится писать достаточно много кода. Поэтому возникла идея: попробовать реализовать подобную модель, используя среду структурного моделирования, в виде графических функционально-блочных диаграмм. Я уже приводил примеры, как можно реализовать принципы объектно-ориентированного программирования (ООП) в графическом языке программирования.  См. "Объектное ориентированное программирование в графических языках". Здесь же мы попробуем реализовать агентное моделирование средствами системной динамики. 

Дальше будем много хардкороного программежа. Поэтому слабонервным, беременным, девушкам обоего пола, кормящим матерям лучше не читать, во избежание родимчика, свинки и чумки!

Читать далее
Total votes 4: ↑4 and ↓0+4
Comments5

Почему падают темпы прогресса?

Reading time7 min
Views17K

Это текст появился в процессе работы над лекциями по теории автоматического управления (пример лекции здесь...), когда я заметил, что мой уровень подготовки явно ниже, чем требуется для этих лекций, при том, что с математикой у меня всегда было хорошо. Более того, я когда-то сдал курс по этим лекциям на честную «тройку», но мне материал кажется очень сложным. Поразмышляв, я пришёл к выводу: проблема в том, что я не использовал этот математический аппарат в деле, а сразу перешел к моделированию на компьютере.  Что, как мне кажется, совсем не положительно сказалось на моей сообразительности. И все из-за этих чертовых компьютеров.

Далее текст-предположение, кто виноват и что делать.

Читать далее
Total votes 84: ↑48 and ↓36+12
Comments487

Технология создания динамических моделей на примере обогрева помещения

Reading time14 min
Views7.1K

Данная учебная задача показывает, как создавать динамическую модель системы, методами структурного моделирования.

Несмотря на то, что данная модель очень проста, процесс ее создания, необходимая последовательность шагов и выполняемые действия в данном примере, точно такие же как для моделей сложных систем. Поэтому этот текст можно рассматривать как методические рекомендации к любой модели создаваемой методом струкутурного моделирования.

В данном переводе сделан акцент на последовательность шагов. Я так же добавил несколько собственных комментарий к каждому шагу. 

Читать далее
Total votes 12: ↑12 and ↓0+12
Comments1

5. Передаточные функции и уравнения динамики замкнутых систем автоматического регулирования (САР)

Reading time7 min
Views27K

Продолжаем публикацию лекций по курсу "Управление в Технических Системах" автор - Олег Степанович Козлов на кафедре Э7 МГТУ им. Н.Э. Баумана.

Данные лекции готовятся к публикации в виде книги, а поскольку здесь есть специалисты по ТАУ, студенты и просто интересующиеся предметом, то любая критика приветствуется. В предыдущих сериях:

1. Введение в теорию автоматического управления.
2. Математическое описание систем автоматического управления 2.1 — 2.32.3 — 2.82.9 — 2.13.
3. ЧАСТОТНЫЕ ХАРАКТЕРИСТИКИ ЗВЕНЬЕВ И СИСТЕМ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ РЕГУЛИРОВАНИЯ.
3.1. Амплитудно-фазовая частотная характеристика: годограф, АФЧХ, ЛАХ, ФЧХ3.2. Типовые звенья систем автоматического управления регулирования. Классификация типовых звеньев. Простейшие типовые звенья3.3. Апериодическое звено 1–го порядка инерционное звено. На примере входной камеры ядерного реактора3.4. Апериодическое звено 2-го порядка3.5. Колебательное звено3.6. Инерционно-дифференцирующее звено3.7. Форсирующее звено.  3.8. Инерционно-интегрирующее звено (интегрирующее звено с замедлением)3.9. Изодромное звено (изодром)3.10 Минимально-фазовые и не минимально-фазовые звенья3.11 Математическая модель кинетики нейтронов в «точечном» реакторе «нулевой» мощности. 4 Структурные преобразования систем автоматического регулирования.

Будет как всегда позновательной увлекательно и интересно.

Читать далее
Total votes 11: ↑9 and ↓2+7
Comments0

Цифровой двойник — рецепты приготовления. Модельно-ориентированное проектирование системы электроснабжения самолета

Reading time13 min
Views5.5K

Стандарт цифровых двойников определяет цифровую модель изделия как “систему верифицированных и валидированных математических, компьютерных моделей и электронных документов изделия, описывающих поведение вновь разрабатываемого или эксплуатируемого изделия на различных стадиях жизненного цикла, использующую программные средства импорта и экспорта моделей и электронных документов, программные средства численного решения задач и компьютерного моделирования, а также визуализации”.

Другими словами, цифровой двойник — это не одна модель, а система моделей или набор моделей, каждая из которых предназначена для решения конкретных задач в рамках жизненного цикла изделия. Требования к конкретной модели определяются задачами, решаемыми с помощью данной модели.

В статье описан реальный опыт создания модели системы электроснабжения самолета (СЭС) в рамках реализации методов модельно-ориентированного проектирования в авиации.

Читать далее
Total votes 3: ↑3 and ↓0+3
Comments6

Information

Rating
Does not participate
Location
Москва, Москва и Московская обл., Россия
Registered
Activity