Pull to refresh
241
0
Send message

Как работают ленивые вычисления

Reading time 10 min
Views 43K
Маленькая Лямбда решила, что уборку в комнате можно отложить и на потом.

Ленивые вычисления — часто используемая методика при исполнении компьютером программ на Haskell. Они делают наш код проще и модульнее, но могут вызвать и замешательство, особенно когда речь заходит об использовании памяти, становясь для новичков распространённой ловушкой. Например, безобидно выглядящее выражение
foldl (+) 0 [1..10^8]
потребует для своего вычисления гигабайты памяти.

В этом руководстве я хочу объяснить, как работают ленивые вычисления и что они означают для времени выполнения и объёма памяти, затрачиваемыми программами на Haskell. Я начну рассказ с основ редукции графов, а после перейду к обсуждению строгой левой свёртки — простейшего примера для понимания и ликвидации утечек памяти.

Тема ленивых вычислений рассматривалась во многих учебниках (например, в книге Саймона Томпсона «Haskell — The Craft of Functional Programming»), но информацию о них, кажется, всё ещё проблематично найти в сети. Надеюсь, моё руководство посодействует решению этой проблемы.

Ленивые вычисления — это компромисс. С одной стороны, они помогают нам сделать код более модульным. С другой стороны, бывает невозможно до конца разобраться, как происходит вычисление в конкретной программе — всегда существуют небольшие отличия между реальностью и тем, что вы о ней думаете. В конце статьи я дам рекомендации, как поступать в ситуациях такого рода. Итак, приступим!

Читать дальше →
Total votes 51: ↑49 and ↓2 +47
Comments 6

Перевод интерактивного учебника «Problem Solving with Algorithms and Data Structures»

Reading time 3 min
Views 64K
imageПривет, Хабр!

Мы (@ali_aliev и avenat) с удовольствием представляем вашему вниманию перевод интерактивного учебника «Problem Solving with Algorithms and Data Structures» от Брэда Миллера (Brad Miller) и Дэвида Ранума (David Ranum) из Luther College, что в Айове, США.

О чём?

В учебнике подробно рассматриваются, объясняются и анализируются наиболее часто используемые структуры данных и алгоритмы. Изложение идёт от простого (что такое алгоритм, как оценить его производительность) к сложному (деревья, графы) с живыми примерами и кодом. В качестве языка программирования выбран Python, а для тех, кто с ним плохо знаком, в первой главе есть большой раздел с его концентрированным описанием.

Авторы рассказывают о таких структурах данных, как стеки, очереди (в том числе с приоритетом), деки, хэш-таблицы, списки, деревья и графы. Последним двум вообще посвящены весьма не маленькие главы. Изложение не просто описательное: для каждой структуры предлагается вариант (а иногда и не один) её реализации на Python. Упор, естественно, делается на объектно-ориентированное программирование: создаётся класс, к нему пишутся методы, некоторые из которых авторы оставляют читателям для самостоятельной доработки. Затем идут примеры использования рассмотренной структуры и описание алгоритмов с её участием.

Одна из глав учебника посвящена рекурсии, в том числе её графическому представлению (фракталы). Разбирается несколько известных рекурсивных задач, а в конце наглядно демонстрируется, что эта методика, несмотря на её элегантность, отнюдь не «серебряная пуля».

Не обделены вниманием и классические алгоритмы для сортировки и поиска. И, естественно, для каждого из них анализируются производительность и «подводные камни», а так же даются рекомендации по применению. В последних главах, посвящённых деревьям и графам, даётся много материала об их разновидностях и связанных с ними алгоритмах. Изложение тут становится более сжатым, многие моменты просто описываются с тем, чтобы после прочтения главы читатель реализовал их самостоятельно.
Читать дальше →
Total votes 48: ↑48 and ↓0 +48
Comments 19

λ-исчисление. Часть вторая: практика

Reading time 5 min
Views 47K
Идею, короткий план и ссылки на основные источники для этой статьи мне подал хабраюзер z6Dabrata, за что ему огромнейшее спасибо.

Первая часть дала нам теоретическое представление о том, что есть лямбда-исчисление. В этой статье мы последуем неофициальной його-заповеди «Practice-practice-practice» и увидим его в действии.
Читать дальше →
Total votes 29: ↑28 and ↓1 +27
Comments 1

λ-исчисление. Часть первая: история и теория

Reading time 6 min
Views 154K
Идею, короткий план и ссылки на основные источники для этой статьи мне подал хабраюзер z6Dabrata, за что ему огромнейшее спасибо.

UPD: в текст внесены некоторые изменения с целью сделать его более понятным. Смысловая составляющая осталась прежней.

Вступление


Возможно, у этой системы найдутся приложения не только
в роли логического исчисления. (Алонзо Чёрч, 1932)


Вообще говоря, лямбда-исчисление не относится к предметам, которые «должен знать каждый уважающий себя программист». Это такая теоретическая штука, изучение которой необходимо, когда вы собираетесь заняться исследованием систем типов или хотите создать свой функциональный язык программирования. Тем не менее, если у вас есть желание разобраться в том, что лежит в основе Haskell, ML и им подобных, «сдвинуть точку сборки» на написание кода или просто расширить свой кругозор, то прошу под кат.
Читать дальше →
Total votes 64: ↑54 and ↓10 +44
Comments 34

Введение в анализ сложности алгоритмов (часть 4)

Reading time 5 min
Views 98K
От переводчика: данный текст даётся с незначительными сокращениями по причине местами излишней «разжёванности» материала. Автор абсолютно справедливо предупреждает, что отдельные темы могут показаться читателю чересчур простыми или общеизвестными. Тем не менее, лично мне этот текст помог упорядочить имеющиеся знания по анализу сложности алгоритмов. Надеюсь, что он окажется полезен и кому-то ещё.
Из-за большого объёма оригинальной статьи я разбила её на части, которых в общей сложности будет четыре.
Я (как всегда) буду крайне признательна за любые замечания в личку по улучшению качества перевода.


Опубликовано ранее:
Часть 1
Часть 2
Часть 3

Оптимальная сортировка


Поздравляю! Теперь вы знаете о том, как анализировать сложность алгоритмов, что такое асимптотическая оценка и нотация «большое-О». Вы также в курсе, как интуитивно выяснить является ли сложностью алгоритма O( 1 ), O( log( n ) ), O( n ), O( n2 ) и так далее. Вы знакомы с символами o, O, ω, Ω, Θ и понятием «наихудшего случая». Если вы добрались до этого места, то моя статья уже выполнила свою задачу.

Этот финальный раздел — опциональный. Он несколько сложнее, так что можете не стесняясь пропустить его, если хотите.От вас потребуется сфокусироваться и потратить некоторое время на решение упражнений. Однако, так же здесь будет продемонстрирован очень полезный и мощный способ анализа сложности алгоритмов, что, безусловно, стоит внимания.
Читать дальше →
Total votes 58: ↑54 and ↓4 +50
Comments 6

Введение в анализ сложности алгоритмов (часть 3)

Reading time 6 min
Views 125K
От переводчика: данный текст даётся с незначительными сокращениями по причине местами излишней «разжёванности» материала. Автор абсолютно справедливо предупреждает, что отдельные темы могут показаться читателю чересчур простыми или общеизвестными. Тем не менее, лично мне этот текст помог упорядочить имеющиеся знания по анализу сложности алгоритмов. Надеюсь, что он окажется полезен и кому-то ещё.
Из-за большого объёма оригинальной статьи я разбила её на части, которых в общей сложности будет четыре.
Я (как всегда) буду крайне признательна за любые замечания в личку по улучшению качества перевода.


Опубликовано ранее:
Часть 1
Часть 2

Логарифмы


image
Если вы знаете, что такое логарифмы, то можете спокойно пропустить этот раздел. Глава предназначается тем, кто незнаком с данным понятием или пользуется им настолько редко, что уже забыл что там к чему. Логарифмы важны, поскольку они очень часто встречаются при анализе сложности. Логарифм — это операция, которая при применении её к числу делает его гораздо меньше (подобно взятию квадратного корня). Итак, первая вещь, которую вы должны запомнить: логарифм возвращает число, меньшее, чем оригинал. На рисунке справа зелёный график — линейная функция f(n) = n, красный — f(n) = sqrt(n), а наименее быстро возрастающий — f(n) = log(n). Далее: подобно тому, как взятие квадратного корня является операцией, обратной возведению в квадрат, логарифм — обратная операция возведению чего-либо в степень.
Читать дальше →
Total votes 74: ↑60 and ↓14 +46
Comments 4

Введение в анализ сложности алгоритмов (часть 2)

Reading time 11 min
Views 168K
От переводчика: данный текст даётся с незначительными сокращениями по причине местами излишней «разжёванности» материала. Автор абсолютно справедливо предупреждает, что отдельные темы могут показаться читателю чересчур простыми или общеизвестными. Тем не менее, лично мне этот текст помог упорядочить имеющиеся знания по анализу сложности алгоритмов. Надеюсь, что он окажется полезен и кому-то ещё.
Из-за большого объёма оригинальной статьи я разбила её на части, которых в общей сложности будет четыре.
Я (как всегда) буду крайне признательна за любые замечания в личку по улучшению качества перевода.


Опубликовано ранее:
Часть 1

Сложность


Из предыдущей части можно сделать вывод, что если мы сможем отбросить все эти декоративные константы, то говорить об асимптотике функции подсчёта инструкций программы будет очень просто. Фактически, любая программа, не содержащая циклы, имеет f( n ) = 1, потому что в этом случае требуется константное число инструкций (конечно, при отсутствии рекурсии — см. далее). Одиночный цикл от 1 до n, даёт асимптотику f( n ) = n, поскольку до и после цикла выполняет неизменное число команд, а постоянное же количество инструкций внутри цикла выполняется n раз.
Читать дальше →
Total votes 55: ↑53 and ↓2 +51
Comments 16

Введение в анализ сложности алгоритмов (часть 1)

Reading time 10 min
Views 378K
От переводчика: данный текст даётся с незначительными сокращениями по причине местами излишней «разжёванности» материала. Автор абсолютно справедливо предупреждает, что отдельные темы покажутся чересчур простыми или общеизвестными. Тем не менее, лично мне этот текст помог упорядочить имеющиеся знания по анализу сложности алгоритмов. Надеюсь, что он будет полезен и кому-то ещё.
Из-за большого объёма оригинальной статьи я разбила её на части, которых в общей сложности будет четыре.
Я (как всегда) буду крайне признательна за любые замечания в личку по улучшению качества перевода.


Введение


Многие современные программисты, пишущие классные и широко распространённые программы, имеют крайне смутное представление о теоретической информатике. Это не мешает им оставаться прекрасными творческими специалистами, и мы благодарны за то, что они создают.

Тем не менее, знание теории тоже имеет свои преимущества и может оказаться весьма полезным. В этой статье, предназначенной для программистов, которые являются хорошими практиками, но имеют слабое представление о теории, я представлю один из наиболее прагматичных программистских инструментов: нотацию «большое О» и анализ сложности алгоритмов. Как человек, который работал как в области академической науки, так и над созданием коммерческого ПО, я считаю эти инструменты по-настоящему полезными на практике. Надеюсь, что после прочтения этой статьи вы сможете применить их к собственному коду, чтобы сделать его ещё лучше. Также этот пост принесёт с собой понимание таких общих терминов, используемых теоретиками информатики, как «большое О», «асимптотическое поведение», «анализ наиболее неблагоприятного случая» и т.п.
Читать дальше →
Total votes 106: ↑98 and ↓8 +90
Comments 27

Итак, вы всё ещё не понимаете Хиндли-Милнера? Часть 3

Reading time 5 min
Views 8.7K
В части 2 мы закончили с определениями всех формальных терминов и символов, которые вы можете увидеть в вопросе на StackOverflow об алгоритме Хиндли-Милнера. Так что теперь мы готовы перевести, о чём же там спрашивается, а именно — правила вывода утверждений о выводе типов. Приступим!
Читать дальше →
Total votes 41: ↑36 and ↓5 +31
Comments 5

Итак, вы всё ещё не понимаете Хиндли-Милнера? Часть 2

Reading time 4 min
Views 9.2K
В части 1 мы говорили о том, какие строительные блоки нужны для формализации Хиндли-Милнера, а в этом посте мы конкретизируем их определения и сформулируем формализацию в целом:
Читать дальше →
Total votes 42: ↑36 and ↓6 +30
Comments 2

Итак, вы всё ещё не понимаете Хиндли-Милнера? Часть 1

Reading time 3 min
Views 23K
Как-то мы сидели в баре с Джошем Лонгом и ещё несколькими друзьями с работы, когда он обнаружил, что я на «эй, ты!» с математикой. А он как раз недавно наткнулся на вот этот вопрос на StackOverflow и сейчас спросил меня, что это означает:



Однако, перед выяснением смысла данной китайской грамоты, думаю, стоит в принципе получить представление о том, для чего вообще это нужно. Пост в блоге Даниэля Спивака (перевод) даёт по-настоящему хорошее объяснение конечной цели алгоритма Хиндли-Милнера (в дополнение к углубленному примеру его применения):
Функционально говоря, Хиндли-Милнер (или Дамас-Милнер) — это алгоритм для вывода типов, основанный на рассмотрении того, как они используются. Он буквально формализует интуитивное знание о том, что тип может быть выведен через функционал, который он поддерживает.

Итак, мы хотим формализовать алгоритм вывода типа для любого заданного выражения. В этом посте я собираюсь остановиться на том, что означает «формализовать что-то», а затем описать «кирпичики» формализации Хиндли-Милнера. Во второй части я дам более конкретное описание этих блоков. Наконец, в третьей части я переведу вопрос со StackOverflow.
Читать дальше →
Total votes 62: ↑54 and ↓8 +46
Comments 14

Тройка полезных монад

Reading time 4 min
Views 47K
Внимание: перед тем как читать текст ниже, вы уже должны иметь представление о том, что такое монады. Если это не так, то прежде прочитайте вот этот пост!

Перед нами функция half:


И мы можем применить её несколько раз:
half . half $ 8
=> 2


Всё работает как и ожидалось. Но вот вы решили, что хорошо бы иметь лог того, что происходит с этой функцией:


half x = (x `div` 2, "Я только что располовинил  " ++ (show x) ++ "!")


Что ж, отлично. Но что будет если вы теперь захотите применить half несколько раз?
half . half $ 8


Вот то, что мы хотели бы, чтобы происходило:


Спойлер: автоматически так не сделается. Придётся всё расписывать ручками:
finalValue = (val2, log1 ++ log2)
    where (val1, log1) = half 8
          (val2, log2) = half val1


Фу! Это ни капли не похоже на лаконичное
half . half $ 8


А что, если у вас есть ещё функции, имеющие лог? Напрашивается такая схема: для каждой функции, возвращающей вместе со значением лог, мы бы хотели объединять эти логи. Это побочный эффект, а никто не силён в побочных эффектах так, как монады!
Читать дальше →
Total votes 63: ↑58 and ↓5 +53
Comments 7

Функторы, аппликативные функторы и монады в картинках

Reading time 5 min
Views 189K
Вот некое простое значение:


И мы знаем, как к нему можно применить функцию:


Элементарно. Так что теперь усложним задание — пусть наше значение имеет контекст. Пока что вы можете думать о контексте просто как о ящике, куда можно положить значение:


Теперь, когда вы примените функцию к этому значению, результаты вы будете получать разные — в зависимости от контекста. Это основная идея, на которой базируются функторы, аппликативные функторы, монады, стрелки и т.п. Тип данных Maybe определяет два связанных контекста:


data Maybe a = Nothing | Just a

Позже мы увидим разницу в поведении функции для Just a против Nothing. Но сначала поговорим о функторах!
Читать дальше →
Total votes 184: ↑175 and ↓9 +166
Comments 60

Истинное могущество регулярных выражений

Reading time 16 min
Views 93K
Как частый посетитель тэга PHP на StackOverflow, я очень часто встречаю вопросы о том, как распарсить какие-то конкретные аспекты HTML, используя регулярные выражения. Самый распространённый ответ на это:
«Ты не можешь парсить HTML с помощью регулярных выражений, потому что HTML не является регулярным. Используй XML парсер, и будет тебе счастье»

Это утверждение — в контексте вопроса — находится где-то между сильно вводящим в заблуждение и абсолютно неправильным. Что я хочу попытаться продемонстрировать в этой статье, так это то, насколько могущественны современные регулярные выражения на самом деле.
Читать дальше →
Total votes 182: ↑172 and ↓10 +162
Comments 39

Основы теории вычислительных систем: машина с конечным числом состояний

Reading time 8 min
Views 31K
Теория вычислительных систем — это то, что позволяет нам программировать. Однако, можно писать программы и без представления о концепциях, скрывающихся за вычислительными процессами. Не то, чтобы это было плохо — когда мы программируем, то работаем на намного более высоком уровне абстракции. В конце концов, когда мы ведём машину, то концентрируемся только на двух или трёх педалях, переключателе передач и руле. Для повседневной неспешной езды этого более чем достаточно. Однако, если мы хотим управлять автомобилем на пределе его возможностей, то тут нужно знать гораздо больше, чем просто три педали, КПП и руль.

Такой подход справедлив и в программировании. Большая часть повседневной мирской работы может быть выполнена при минимальном знании теории вычислительных систем или даже вообще без него. Не нужно понимать теорию категорий, чтобы накидать форму «Контакты» в PHP. Тем не менее, если вы планируете писать код, требующий серьёзных вычислений, то тут уж придётся разобраться с тем, что у этих самых вычислений под капотом.

Цель этой статьи — представить некоторые фундаментальные основы вычислений. Если это окажется интересным, то в дальнейшем я могу написать более продвинутый топик на эту тему, но прямо сейчас я хочу просто рассмотреть логику простейшего абстрактного вычислительного устройства — машины с конечным числом состояний (finite state machine).
Читать дальше →
Total votes 24: ↑18 and ↓6 +12
Comments 11

Полевые транзисторы. For dummies

Reading time 8 min
Views 586K

Введение


А теперь давайте поговорим о полевых транзисторах. Что можно предположить уже по одному их названию? Во-первых, поскольку они транзисторы, то с их помощью можно как-то управлять выходным током. Во-вторых, у них предполагается наличие трех контактов. И в-третьих, в основе их работы лежит p-n переход. Что нам на это скажут официальные источники?
Полевыми транзисторами называют активные полупроводниковые приборы, обычно с тремя выводами, в которых выходным током управляют с помощью электрического поля. (electrono.ru)

Определение не только подтвердило наши предположения, но и продемонстрировало особенность полевых транзисторов — управление выходным током происходит посредством изменения приложенного электрического поля, т.е. напряжения. А вот у биполярных транзисторов, как мы помним, выходным током управляет входной ток базы.

Еще один факт о полевых транзисторах можно узнать, обратив внимание на их другое название — униполярные. Это значит, что в процессе протекания тока у них участвует только один вид носителей заряда (или электроны, или дырки).

Три контакта полевых транзисторов называются исток (источник носителей тока), затвор (управляющий электрод) и сток (электрод, куда стекают носители). Структура кажется простой и очень похожей на устройство биполярного транзистора. Но реализовать ее можно как минимум двумя способами. Поэтому различают полевые транзисторы с управляющим p-n переходом и с изолированным затвором.

Вообще, идея последних появилась еще в 20-х годах XX века, задолго до изобретения биполярных транзисторов. Но уровень технологии позволили реализовать ее лишь в 1960 году. В 50-х же был сначала теоретически описан, а затем получил воплощение полевой транзистор с управляющим p-n переходом. И, как и их биполярные «собратья», полевые транзисторы до сих пор играют в электронике огромную роль.

Перед тем, как перейти к рассказу о физике работы униполярных транзисторов, хочу напомнить ссылки, по которым можно освежить свои знания о p-n переходе: раз и два.
Читать дальше →
Total votes 44: ↑40 and ↓4 +36
Comments 25

Биполярные транзисторы. For dummies

Reading time 10 min
Views 939K

Предисловие


Поскольку тема транзисторов весьма и весьма обширна, то посвященных им статей будет две: отдельно о биполярных и отдельно о полевых транзисторах.

Транзистор, как и диод, основан на явлении p-n перехода. Желающие могут освежить в памяти физику протекающих в нем процессов здесь или здесь.

Необходимые пояснения даны, переходим к сути.
Читать дальше →
Total votes 76: ↑73 and ↓3 +70
Comments 26

Диоды. For dummies

Reading time 8 min
Views 166K

Введение


Диод — двухэлектродный электронный прибор, обладает различной проводимостью в зависимости от направления электрического тока. Электрод диода, подключённый к положительному полюсу источника тока, когда диод открыт (то есть имеет маленькое сопротивление), называют анодом, подключённый к отрицательному полюсу — катодом. (wikipedia)

Все диоды можно разделить на две большие группы: полупроводниковые и неполупроводниковые. Здесь я буду рассматривать только первую из них.

В основе полупроводникового диода лежит такая известная штука, как p-n переход. Думаю, что большинству читателей о нем рассказывали на уроках физики в школе, а кому-то более подробно еще и в институте. Однако, на всякий случай приведу общий принцип его работы.
Читать дальше →
Total votes 124: ↑122 and ↓2 +120
Comments 42

Information

Rating
Does not participate
Location
Калининградская обл., Россия
Registered
Activity