Pull to refresh
  • by relevance
  • by date
  • by rating

Фильтр Калмана для минимизации энтропийного значения случайной погрешности с не Гауссовым распределением

PythonAlgorithmsMathematicsDevelopment for WindowsPopular science
Tutorial

Введение


На Habr математическое описание работы фильтра Калмана и особенности его применения рассматривались в следующих публикациях [1÷10]. В публикации [2] в простой и доходчивой форме рассмотрен алгоритм работы фильтра Калмана (ФК) в модели «пространства состояний», Следует отметить, что исследование систем контроля и управления во временной области с помощью переменных состояния широко используется в последнее время благодаря простоте проведения анализа [11].

Публикация [8] представляет значительный интерес именно для обучения. Очень эффективен методический приём автора, который начал свою статью с рассмотрения распределения случайной погрешности Гаусса, рассмотрел алгоритм ФК и закончил простой итерационной формулой для подбора коэффициента усиления ФК. Автор ограничился рассмотрением распределения Гаусса мотивируя это тем, что при достаточно больших $n$ (многократных измерений) закон распределения суммы случайных величин стремится к распределению Гаусса.

Теоретически такое утверждение, безусловно, справедливо, однако на практике число измерений в каждой точке диапазона не может быть очень большим. Сам R. E. Kalman получил результаты о минимуме ковариации фильтра на базе ортогональных проекций, без предположения о гауссовости ошибок измерений [12].

Целью настоящей публикации является исследование возможностей фильтра Калмана для минимизации энтропийного значения случайной погрешности с не Гауссовым распределением.
Для оценки эффективности фильтра Калмана при идентификации закона распределения или суперпозицией законов по экспериментальным данным воспользуемся информационная теорией измерений основанной на теории информации К. Шеннона, согласно которой информация, подобно физической величине, может быть измерена и оценена.
Читать дальше →
Total votes 35: ↑34 and ↓1 +33
Views7.6K
Comments 17

SciPy, алгоритмы на графах

PythonMathematics
Sandbox
Tutorial

image


SciPy (произносится как сай пай) — это пакет прикладных математических процедур, основанный на расширении Numpy Python. Он значительно расширяет возможности Python, предоставляя в распоряжение пользователя команды и классы высокого уровня для управления данными и их визуализацией. С SciPy интерактивный сеанс Python превращается в такую же полноценную среду обработки данных и прототипирования сложных систем, как MATLAB, IDL, Octave, R-Lab и SciLab.

Читать дальше →
Total votes 17: ↑17 and ↓0 +17
Views6K
Comments 11

SciPy, ввод и вывод в MATLAB

PythonMathematicsMatlab
Tutorial

SciPy (произносится как сай пай) — это пакет прикладных математических процедур, основанный на расширении Numpy Python. С SciPy интерактивный сеанс Python превращается в такую же полноценную среду обработки данных и прототипирования сложных систем, как MATLAB, IDL, Octave, R-Lab и SciLab. В этом посте я хотел бы рассказать о возможностях пакета ввода/вывода scipy.io, который позволяет работать с файлами данных Octave и MATLAB.

Читать дальше →
Total votes 14: ↑13 and ↓1 +12
Views4.5K
Comments 2

SciPy, оптимизация

PythonMathematics
Tutorial

SciPy (произносится как сай пай) — это пакет прикладных математических процедур, основанный на расширении Numpy Python. С SciPy интерактивный сеанс Python превращается в такую же полноценную среду обработки данных и прототипирования сложных систем, как MATLAB, IDL, Octave, R-Lab и SciLab. Сегодня я хочу коротко рассказать о том, как следует применять некоторые известные алгоритмы оптимизации в пакете scipy.optimize. Более подробную и актуальную справку по применению функций всегда можно получить с помощью команды help() или с помощью Shift+Tab.

Читать дальше →
Total votes 16: ↑15 and ↓1 +14
Views43.2K
Comments 19

Функции Бесселя в программе символьной математики SymPy

PythonProgrammingMathematicsDevelopment for Windows
Tutorial
Введение:
Большое число самых разнообразных задач, относящихся практически ко всем важнейшим разделам математической физики и призванных ответить на актуальные технические вопросы, связано с применением функций Бесселя.

Функции Бесселя широко используются при решении задач акустики, радиофизики, гидродинамики, задач атомной и ядерной физики. Многочисленные приложения функций Бесселя к теории теплопроводности и теории упругости (задачи о колебаниях пластинок, задачи теории оболочек, задачи определения концентрации напряжения вблизи трещин).

Такая популярность функций Бесселя объясняется тем, что решение уравнений математической физики, содержащих оператор Лапласа в цилиндрических координатах, классическим методом разделения переменных приводит к обыкновенному дифференциальному уравнению, служащему для определения этих функций[1].

Читать дальше →
Total votes 9: ↑8 and ↓1 +7
Views7.4K
Comments 0

SciPy, оптимизация с условиями

Open Data Science corporate blogPythonAlgorithmsMathematicsStudying in IT
Tutorial


SciPy (произносится как сай пай) — это библиотека для научных вычислений, основанная на numpy и скомпилированных библиотеках, написанных на C и Fortran. С SciPy интерактивный сеанс Python превращается в такую же полноценную среду обработки данных, как MATLAB, IDL, Octave, R или SciLab.


В этой статье рассмотрим основные приемы математического программирования — решения задач условной оптимизации для скалярной функции нескольких переменных с помощью пакета scipy.optimize. Алгоритмы безусловной оптимизации уже рассмотрены в прошлой статье. Более подробную и актуальную справку по функциям scipy всегда можно получить с помощью команды help(), Shift+Tab или в официальной документации.

Читать дальше →
Total votes 53: ↑48 and ↓5 +43
Views22.6K
Comments 5

Как Netflix использует Питон

High performanceOpen sourcePythonMachine learning
Translation


Поскольку многие из нас готовятся к конференции PyCon, мы хотели немного рассказать, как Python используется в Netflix. Мы применяем Python на всём жизненном цикле: от принятия решения, какие сериалы финансировать, и заканчивая работой CDN для отгрузки видео 148 миллионам пользователей. Мы вносим свой вклад во многие пакеты Python с открытым исходным кодом, некоторые из которых упомянуты ниже. Если что-то вас интересует, посмотрите наш сайт вакансий или ищите нас на PyCon.
Читать дальше →
Total votes 26: ↑25 and ↓1 +24
Views17.8K
Comments 1

Курс лекций «Основы цифровой обработки сигналов»

Open sourcePythonAlgorithmsMathematicsMatlab
Всем привет!

Часто ко мне обращаются люди с вопросами по задачам из области цифровой обработки сигналов (ЦОС). Я подробно рассказываю нюансы, подсказываю нужные источники информации. Но всем слушателям, как показало время, не хватает практических задач и примеров в процессе познания этой области. В связи с этим я решил написать краткий интерактивный курс по цифровой обработке сигналов и выложить его в открытый доступ.

Большая часть обучающего материала для наглядного и интерактивного представления реализована с использованием Jupyter Notebook. Предполагается, что читатель имеет базовые знания из области высшей математики, а также немного владеет языком программирования Python.


Читать дальше →
Total votes 100: ↑100 and ↓0 +100
Views89.7K
Comments 94

О нет! Моя Data Science ржавеет

Издательский дом «Питер» corporate blogPythonProgrammingC++Rust
Translation
Привет, Хабр!

Предлагаем вашему вниманию перевод интереснейшего исследования от компании Crowdstrike. Материал посвящен использованию языка Rust в области Data Science (применительно к malware analysis) и демонстрирует, в чем Rust на таком поле может посоперничать даже с NumPy и SciPy, не говоря уж о чистом Python.


Приятного чтения!
Читать дальше →
Total votes 11: ↑9 and ↓2 +7
Views6.6K
Comments 9

Вычислительная геология и визуализация: пример Python 3 Jupyter Notebook

Open sourceProgrammingGeoinformation servicesData visualizationPopular science

Сегодня вместо обсуждения геологических моделей мы посмотрим пример их программирования в среде Jupyter Notebook на языке Python 3 и с библиотеками Pandas, NumPy, SciPy, XArray, Dask Distributed, Numba, VTK, PyVista, Matplotlib. Это довольно простой ноутбук с поддержкой многопоточной работы и возможностью запуска локально и в кластере для обработки больших данных, отложенными вычислениями (ленивыми) и наглядной трехмерной визуализацией результатов. В самом деле, я постарался собрать разом целый набор сложных технических концепций и сделать их простыми. Для создания кластера на Amazon AWS смотрите скрипт AWS Init script for Jupyter Python GIS processing, предназначенный для единовременного создания набора инстансов и запуска планировщика ресурсов на главном инстансе.

Визуализация с помощью Visualization Toolkit(VTK) и PyVista это уже далеко не Matplotlib

Читать дальше →
Total votes 6: ↑4 and ↓2 +2
Views2.2K
Comments 0

Студенты, лабы и python: обработка данных

PythonMathematicsData visualizationStudying in ITPhysics
Tutorial

В своей предыдущей заметке на тему обработки данных лабораторных работ я написал об использовании пакета gnuplot – простого и мощного инструмента для решения подобных задач и графического представления результатов. Однако довольно распространённым является мнение, что студенты, которым я советовал использовать gnuplot, вероятно, изучают программирование и способы визуализации данных, и что для них более естественным и полезным будет практическое применение уже полученных навыков в этой сфере. В этом коротком тексте мы рассмотрим применение python с использованием библиотек scipy для обработки данных и matplotlib для представления результатов.

Читать далее
Total votes 3: ↑3 and ↓0 +3
Views2.4K
Comments 2

Python, исследование данных и выборы: часть 1

PythonProgrammingData MiningStudying in ITStatistics in IT
Tutorial

Серия из 5 постов для начинающих представляет собой «ремикс» первой главы книги 2015 года под названием «Clojure для исследования данных» (Clojure for Data Science). Автор книги, Генри Гарнер, любезно дал согласие на использование материалов книги для данного ремикса с использованием языка Python.

Книга была написана как приглашение в так называемую «науку о данных», которая в последние годы получила сильный импульс к развитию в связи с потребностью в быстрой и своевременной обработке больших наборов данных локально и в распределенной среде.

Три главы книги были адаптированы под язык Python в течение следующего года после издания книги, т.е. в 2016 году. Публикация ремикса книги в РФ не получилась по разным причинам, но одна из главных станет понятной в конце этой серии постов. В конце заключительного поста можно будет проголосовать за или против размещения следующей серии постов. А пока же…

Читать далее
Total votes 5: ↑4 and ↓1 +3
Views3.7K
Comments 4

Python, исследование данных и выборы: часть 2

PythonProgrammingData MiningStudying in ITStatistics in IT
Tutorial

Пост №2 для начинающих посвящен описательным статистикам, группированию данных и нормальному распределению. Все эти сведения заложат основу для дальнейшего анализа электоральных данных.

Читать далее
Total votes 5: ↑3 and ↓2 +1
Views1.9K
Comments 6
2