Pull to refresh
  • by relevance
  • by date
  • by rating

Немного про кино или как делать интерактивные визуализации в python

PythonData visualization


Введение


В этой заметке я хочу рассказать о том, как можно достаточно легко строить интерактивные графики в Jupyter Notebook'e с помощью библиотеки plotly. Более того, для их построения не нужно поднимать свой сервер и писать код на javascript. Еще один большой плюс предлагаемого подхода — визуализации будут работать и в NBViewer'e, т.е. можно будет легко поделиться своими результатами с коллегами. Вот, например, мой код для этой заметки.


Для примеров я взяла скаченные в апреле данные о фильмах (год выпуска, оценки на КиноПоиске и IMDb, жанры и т.д.). Я выгрузила данные по всем фильмам, у которых было хотя бы 100 оценок — всего 36417 фильмов. Про то, как скачать и распарсить данные КиноПоиска, я рассказывала в предыдущем посте.


Читать дальше →
Total votes 55: ↑54 and ↓1 +53
Views56.1K
Comments 8

Открытый курс машинного обучения. Тема 2: Визуализация данных c Python

Open Data SciencePythonData MiningData visualizationMachine learning

Второе занятие посвящено визуализации данных в Python. Сначала мы посмотрим на основные методы библиотек Seaborn и Plotly, затем поанализируем знакомый нам по первой статье набор данных по оттоку клиентов телеком-оператора и подглядим в n-мерное пространство с помощью алгоритма t-SNE. Есть и видеозапись лекции по мотивам этой статьи в рамках второго запуска открытого курса (сентябрь-ноябрь 2017).


UPD: теперь курс — на английском языке под брендом mlcourse.ai со статьями на Medium, а материалами — на Kaggle (Dataset) и на GitHub.


Сейчас статья уже будет существенно длиннее. Готовы? Поехали!

Читать дальше →
Total votes 52: ↑52 and ↓0 +52
Views286.9K
Comments 45

Как мы построили облачную инфраструктуру обработки данных для кросс-продуктовой аналитики

SkyengAmazon Web ServicesBig DataData visualization

image


Мы в Skyeng очень много внимания уделяем анализу данных. Он позволяет нам правильно планировать работу и распределять ресурсы между различными задачами. Сегодня разработчик аналитики Глеб Сологуб расскажет, как он собрал для нас инфраструктуру сбора и анализа данных по всему нашему зоопарку сервисов и приложений, уложившись в годовой бюджет 12 тыс долларов.

Читать дальше →
Total votes 13: ↑12 and ↓1 +11
Views16.1K
Comments 13

Как учёные перемещаются по миру

Popular science

Недавно в журнале Science была статья “Огромный архив резюме раскрыл самых путешествующих учёных” ( “Vast set of public CVs reveals the world’s most migratory scientists” ) — где на основе публичных данных из системы orcid была продемонстрирована статистика переезда учёных из страны в страну. Все данные использованные для статьи тоже были выложены в октрытый доступ, и я решил посмотреть куда-же разьезжаются учёные из России в общем, ну и из родного Физтеха в частности.

Читать дальше →
Total votes 25: ↑25 and ↓0 +25
Views14.8K
Comments 4

Визуализация данных для вашего Web-проекта

DataArtWeb designWebsite developmentData visualization


Автор: Александр Кашеверов, Senior JavaScript Developer

Добро пожаловать и приятного чтения!

Статья для тех, кто раньше не использовал графики в веб, но собирается. Также для тех, кто хочет глубже познакомиться с этой темой.

Цель — осветить предметную область и упростить проблему выбора конкретного решения. Рассмотрим отличия библиотек и остановим взгляд на популярных вариантах, будут примеры и совсем немного теории.

Для лучшего понимания — необходимо знание JavaScript и общее представление о работе веб.

Конечно, у визуализации данных есть своя история (в статье мы этого касаться не будем), если интересно — можно ознакомиться, например, здесь.

Моя статья, вероятно, не всеобъемлющая, поэтому пишите комментарии и личные сообщения, я готов выслушать критику и дополнить материал.
Читать дальше →
Total votes 5: ↑5 and ↓0 +5
Views13.6K
Comments 5

Краткое руководство по Dash — Python веб-фреймворк для создания дэшбордов. Installation + Dash Layout

Website developmentPythonWeb services testing
Tutorial
image

Всем привет!

Сегодня предлагаю погрузиться в один из удобнейших веб-фреймворков в связке c Python под названием Dash. Появился он не так давно, пару лет назад благодаря разработчикам фреймворка plotly. Сам Dash является связкой Flask, React.Js, HTML и CSS.

Выступление Криса Пармера на PLOTCON 2016


Давайте сразу установим фреймворк. Обновленные версии уточняйте тут.

pip install dash==0.31.1  # The core dash backend
pip install dash-html-components==0.13.2  # HTML components
pip install dash-core-components==0.38.1  # Supercharged components
pip install dash-table==3.1.7  # Interactive DataTable component (new!)

Друзья, если вы действительно хотите разобраться в данном фреймворке, читайте публикации до конца, так как зачастую сначала следуют примеры, а уже после детальный обзор кода. Если вам все равно непонятно — советую читать документацию по Dash на английском языке в оригинале. Также в рунете есть несколько статей, которые объясняют концепции, которые я решил пропустить в данном туториале.
Читать дальше →
Total votes 26: ↑26 and ↓0 +26
Views48.2K
Comments 8

Сравнительный анализ рынков б.у. Автомобилей Германии и Франции в B и C сегменте

Data MiningData visualizationIT-emigration
Sandbox
Привет, Хабр!

В этом посте я хотел поделиться опытом использования нескольких питоновых инструментов для сравнительного анализа рынка подержанных машин в Европе на примере Германии и Франции.

image
Читать дальше →
Total votes 15: ↑14 and ↓1 +13
Views6.8K
Comments 13

Многомерные графики в Python — от трёхмерных и до шестимерных

PythonProgrammingOpen dataData visualizationInfographics
Translation
Tutorial

Примеры многомерных графиков

Введение


Визуализация — важная часть анализа данных, а способность посмотреть на несколько измерений одновременно эту задачу облегчает. В туториале мы будем рисовать графики вплоть до 6 измерений.


Plotly — это питоновская библиотека с открытым исходным кодом для разнообразной визуализации, которая предлагает гораздо больше настроек, чем известные matplotlib и seaborn. Модуль устанавливается как обычно — pip install plotly. Его мы и будем использовать для рисования графиков.


Давайте подготовим данные


Для визуализации мы используем простые данные об автомобилях от UCI (Калифорнийский университет в Ирвине — прим. перев.), которые представляют собой 26 характеристик для 205 машин (26 столбцов на 205 строк). Для визуализации шести измерений мы возьмём такие шесть параметров.


Здесь показаны только 4 строки из 205

Загрузим данные из CSV с помощью pandas.


import pandas as pd
data = pd.read_csv("cars.csv")

Теперь, подготовившись, начнем с двух измерений.

Читать дальше →
Total votes 27: ↑26 and ↓1 +25
Views24.3K
Comments 2

10 лучших JavaScript библиотек для визуализации данных на графиках и диаграммах

Website developmentJavaScriptProgrammingBig DataData visualization
Translation
Есть в графиках что-то магическое. Изгиб кривой мгновенно раскрывает всю ситуацию — историю развития эпидемии, паники или периода процветания. Эта линия просвещает, пробуждает воображение, убеждает.
Генри. Д. Хаббард
Объемы данных, с которыми нужно работать, постоянно увеличиваются. И чем больше информации, тем сложнее ее обрабатывать. Вот почему сейчас стала особенно популярна тема визуализации данных — в виде графиков, диаграмм, дашбордов, желательно интерактивных. Визуальное представление данных позволяет нам, людям, тратить меньше времени и сил на их просмотр, анализ и осмысление, а также на принятие правильных, информированных решений на основе этого.

Вряд ли кто-то станет отрицать, что в современном HTML5 вебе JavaScript — самая универсальная и простая технология для визуализации данных. Так что, если вы занимаетесь фронтенд-разработкой, то вы, скорее всего, либо уже имели дело с созданием JS чартов, либо столкнетесь с этим в (скором) будущем.

Существует множество JavaScript библиотек для построения графиков и диаграмм, каждая из которых (как и любые другие инструменты) имеет свои плюсы и минусы. Чтобы облегчить вам жизнь, я решил рассказать о тех из них, которые нравятся мне больше всего. Я считаю, десять следующих библиотек — это лучшие JS библиотеки для создания графиков, и они действительно способны помочь решить практически любую задачу по визуализации данных. Давайте вместе пройдемся по списку и убедимся, что они вам известны хотя бы базово и вы не упустили из виду какую-нибудь хорошую библиотеку, которая может оказаться полезной в текущих или будущих больших проектах.

Заглавная картинка: визуализация данных на графиках и диаграммах

Что ж, приступим: вот лучшие JS библиотеки для визуализации данных!
Читать дальше →
Total votes 31: ↑27 and ↓4 +23
Views62.5K
Comments 29

Визуализация странных аттракторов в Plotly — это шедеврально

PythonMathematicsData visualization
Поэзия — это очень красивый, зачастую глубокомысленный слог, которым мы не пользуемся в обыденной жизни, но так им любим наслаждаться. То же самое можно сказать и о математике. В фильме «Пи» главный герой называет математику «языком природы», а в фильме «Игры разума» главный герой говорит о ней, как об «особом виде искусства». Мы же, в обыденной жизни, можем напрочь забыть об этом.

Облик странных аттракторов необычен и притягателен даже в двумерном измерении. Plotly позволяет строить их в трех измерениях, причем он дает возможность очень легко получить именно 3D-модель, которую можно «вертеть» и сквозь которую можно «пролетать» — ощущение «прикосновения».

image

Читать дальше →
Total votes 43: ↑43 and ↓0 +43
Views10.9K
Comments 31

When the COVID-19 pandemic will end

Data MiningData Engineering

Dear all,


I am the head of Data Science at British Transport Police, and one of our department tasks is to efficiently allocate staff, depending on the crime rates, which correlate to passenger flow. As you understand, the passenger flow will undertake significant change as soon as the Government decides to cancel quarantine or stop some limitations. The question naturally arises: when will the pandemic end and how to prepare for a return to normal life.

Read more →
Total votes 9: ↑7 and ↓2 +5
Views2.4K
Comments 0

Шпаргалка по визуализации данных в Python с помощью Plotly

PythonData visualization
🔥 Technotext 2020
Tutorial
Plotly — библиотека для визуализации данных, состоящая из нескольких частей:

  • Front-End на JS
  • Back-End на Python (за основу взята библиотека Seaborn)
  • Back-End на R

В этой простыне все примеры разобраны от совсем простых к более сложным, так что разработчикам с опытом будет скучно. Так же эта «шпаргалка» не заменит на 100% примеры из документации.



Читать дальше →
Total votes 15: ↑15 and ↓0 +15
Views54.8K
Comments 15

Как сделать интерактивную карту с помощью Python и open source библиотек

SkillFactoryOpen sourcePythonProgrammingOpenStreetMap
Translation
Tutorial

Сегодня делимся с вами пошаговым руководством создания интерактивных карт для веб-приложения или блога. Просто сохраните эту статью в закладках. Хоть и существует, например, библиотека d3.js, которая может создавать пользовательские карты, есть несколько инструментов еще проще. В этом посте посмотрим на три простые в обращении, но мощные библиотеки Python с открытым исходным кодом и поработаем с ними.
Читать дальше →
Total votes 20: ↑18 and ↓2 +16
Views14.4K
Comments 3

Формируем тренировочный сэмпл данных при distribution shift

PythonData MiningData recoveryData Engineering
Translation
Tutorial
Дисклеймер: статья является переведенным продуктом автора Max’a Halforda. Перевод не чистый, а адаптивный. Такой, чтобы было понимание на любом рубеже знаний.
Читать дальше →
Total votes 3: ↑3 and ↓0 +3
Views586
Comments 0