Pull to refresh
  • by relevance
  • by date
  • by rating

L-Systems — математическая красота растений

Biotechnologies
Красота растений привлекала внимание математиков веками. Активнее всего изучались интересные геометрические свойства растений, такие как симметрия листьев относительно центральной оси, радиальная симметрия цветов, и спиральное расположение семечек в шишках. «Красота связана с симметрией» (H. Weyl. Symmetry). Во время роста живых организмов, особенно растений, можно четко видеть регулярно повторяющиеся многоклеточные структуры. В случае составных листьев, например, маленькие листочки, которые являются частью большого взрослого листа, имеют ту же форму, что весь лист имел на раннем этапе формирования.

В 1968г. Венгерский биолог и ботаник Аристид Линденмайер (Aristid Lindenmayer) предложил математическую модель для изучения развития простых многоклеточных организмов, которая позже была расширена и используется для моделирования сложных ветвящихся структур — разнообразных деревьев и цветов. Эта модель получила название Lindenmayer System, или просто L-System.

Для тех, кто в теме и не хочет все читать целиком, проскрольте вниз, есть вопрос.
Дальше интереснее
Total votes 87: ↑85 and ↓2 +83
Views19.8K
Comments 33

L-systems. Моделирование деревьев

Biotechnologies
Пост представляет собой вольный перевод второй главы книги «Алгоритмическая красота растений» Пшемыслава Прущинкевича и Аристида Линденмайера (The Algorithmic Beauty of Plants, Aristid Lindenmayer, Przemyslaw Prusinkiewicz), и является продолжением замечательной статьи «L-Systems — математическая красота растений» valyard (ему спасибо за вдохновение :)

Читать главу
Total votes 55: ↑53 and ↓2 +51
Views7.8K
Comments 20

Синтез фракталов: IFS и L-системы

Algorithms
Sandbox

Введение

[1]
Фракталом (лат.«fractus» – дроблёный, сломанный, разбитый) называют сложную геометрическую фигуру, обладающую свойством самоподобия, т.е. составленной из нескольких частей, каждая из которых подобна целой фигуре. В более широком смысле под фракталами понимают множества точек в евклидовом пространстве, имеющие промежуточную (дробную) метрическую размерность (размерность Хаусдорфа).
Размерность Хаусдорфа – естественный способ определить размерность множества в метрическом пространстве. Размерность Хаусдорфа согласуется с нашими обычными представлениями о размерности в тех случаях, когда эти обычные представления есть. Например, в трёхмерном евклидовом пространстве хаусдорфова размерность конечного множества равна нулю, размерность гладкой кривой – единице, размерность гладкой поверхности – двум и размерность множества ненулевого объёма – трём.
Читать дальше →
Total votes 43: ↑38 and ↓5 +33
Views16.8K
Comments 26

L-системы и что они себе позволяют

Entertaining tasksPythonProgrammingMathematics
Sandbox

Вперёд за кроликом, всё ниже и ниже…

Давайте начнём с азов, если брать определение из всем известной и всеми любимой Википедии, то L-система (или же система Линденмайера) — это параллельная система переписывания и вид формальной грамматики. Если говорить простым языком, то L-система состоит из алфавита символов, которые могут быть использованы для создания строк, набора порождающих правил, которые задают правила подстановки вместо каждого символа, начальной строки ( “аксиомы” ), с которой начинается построение, и механизм перевода образованной строки в геометрические структуры. Самым простым примером L-системы может служить задача построения дерева.

Вводные данные:

Строка (далее Аксиома): A B

Переменные (которые мы можем задействовать в построении дерева): A B C

Правило (правило по которому каждая переменная на последующие строке меняется):

Читать далее
Total votes 10: ↑8 and ↓2 +6
Views2.7K
Comments 4