Pull to refresh
  • by relevance
  • by date
  • by rating

Чем занимаются в департаменте R&D ABBYY: NLP Advanced Research Group

ABBYY corporate blogMachine learningNatural Language Processing
Чем занимаются в департаменте R&D в ABBYY? Чтобы ответить на этот вопрос, мы начинаем серию публикаций о том, как наши разработчики создают новые технологии и совершенствуют существующие решения. Сегодня расскажем про направление Natural Language Processing (NLP).

Мы в ABBYY занимаемся исследованиями в сфере обработки естественного языка и беремся за сложные научные задачи, для которых пока нет готовых решений. Так мы создаем инновации, которые ложатся в основу продуктов и помогают нашим заказчикам, да и нам двигаться вперед. Кстати, 24 ноября на лекции в Школе глубокого обучения при МФТИ руководитель NLP Advanced Research Group в департаменте R&D ABBYY Иван Смуров расскажет, какие в мире есть задачи по анализу текста и как современные нейросети позволяют их решать. А в этом посте Иван рассказал нам о трех задачах, которыми занимается сейчас.
Читать дальше →
Total votes 13: ↑12 and ↓1+11
Views4.6K
Comments 6

NLP. Основы. Техники. Саморазвитие. Часть 1

ABBYY corporate blogMachine learningNatural Language Processing

Привет! Меня зовут Иван Смуров, и я возглавляю группу исследований в области NLP в компании ABBYY. О том, чем занимается наша группа, можно почитать здесь. Недавно я читал лекцию про Natural Language Processing (NLP) в Школе глубокого обучения – это кружок при Физтех-школе прикладной математики и информатики МФТИ для старшеклассников, интересующихся программированием и математикой. Возможно, тезисы моей лекции кому-то пригодятся, поэтому поделюсь ими с Хабром.

Поскольку за один раз все объять не получится, разделим статью на две части. Сегодня я расскажу о том, как нейросети (или глубокое обучение) используются в NLP. Во второй части статьи мы сконцентрируемся на одной из самых распространенных задач NLP — задаче извлечения именованных сущностей (Named-entity recognition, NER) и разберем подробно архитектуры ее решений.


Читать дальше →
Total votes 53: ↑51 and ↓2+49
Views43K
Comments 11

Как сделать из нейросети журналиста, или «Секреты сокращения текста на Хабре без лишних слов»

ABBYY corporate blogMachine learningArtificial IntelligenceDIY
Только не удивляйтесь, но второй заголовок к этому посту сгенерировала нейросеть, а точнее алгоритм саммаризации. А что такое саммаризация?

Это одна из ключевых и классических задач Natural Language Processing (NLP). Она заключается в создании алгоритма, который принимает на вход текст и на выходе выдаёт его сокращённую версию. Причем в ней сохраняется корректная структура (соответствующая нормам языка) и правильно передается основная мысль текста.

Такие алгоритмы широко используются в индустрии. Например, они полезны для поисковых движков: с помощью сокращения текста можно легко понять, коррелирует ли основная мысль сайта или документа с поисковым запросом. Их применяют для поиска релевантной информации в большом потоке медиаданных и для отсеивания информационного мусора. Сокращение текста помогает в финансовых исследованиях, при анализе юридических договоров, аннотировании научных работ и многом другом. Кстати, алгоритм саммаризации сгенерировал и все подзаголовки для этого поста.

К моему удивлению, на Хабре оказалось совсем немного статей о саммаризации, поэтому я решил поделиться своими исследованиями и результатами в этом направлении. В этом году я участвовал в соревновательной дорожке на конференции «Диалог» и ставил эксперименты над генераторами заголовков для новостных заметок и для стихов с помощью нейронных сетей. В этом посте я вначале вкратце пробегусь по теоретической части саммаризации, а затем приведу примеры с генерацией заголовков, расскажу, какие трудности возникают у моделей при сокращении текста и как можно эти модели улучшить, чтобы добиться выдачи более качественных заголовков.
Читать дальше →
Total votes 26: ↑26 and ↓0+26
Views8.1K
Comments 9