Pull to refresh
  • by relevance
  • by date
  • by rating

Декартово дерево: Часть 3. Декартово дерево по неявному ключу

Algorithms

Оглавление (на данный момент)


Часть 1. Описание, операции, применения.
Часть 2. Ценная информация в дереве и множественные операции с ней.
Часть 3. Декартово дерево по неявному ключу.
To be continued...

Очень сильное колдунство


После всей кучи возможностей, которые нам предоставило декартово дерево в предыдущих двух частях, сегодня я совершу с ним нечто странное и кощунственное. Тем не менее, это действие позволит рассматривать дерево в совершенно новой ипостаси — как некий усовершенствованный и мощный массив с дополнительными фичами. Я покажу, как с ним работать, покажу, что все операции с данными из второй части сохраняются и для модифицированного дерева, а потом приведу несколько новых и полезных.

Вспомним-ка еще раз структуру дерамиды. В ней есть ключ x, по которому дерамида есть дерево поиска, случайный ключ y, по которому дерамида есть куча, а также, возможно, какая-то пользовательская информация с (cost). Давайте совершим невозможное и рассмотрим дерамиду… без ключей x. То есть у нас будет дерево, в котором ключа x нет вообще, а ключи y — случайные. Соответственно, зачем оно нужно — вообще непонятно :)

На самом деле расценивать такую структуру стоит как декартово дерево, в котором ключи x все так же где-то имеются, но нам их не сообщили. Однако клянутся, что для них, как полагается, выполняется условие двоичного дерева поиска. Тогда можно представить, что эти неизвестные иксы суть числа от 0 до N-1 и неявно расставить их по структуре дерева:

Получается, что в дереве будто бы не ключи в вершинах проставлены, а сами вершины пронумерованы. Причем пронумерованы в уже знакомом с прошлой части порядке in-order обхода. Дерево с четко пронумерованными вершинами можно рассматривать как массив, в котором индекс — это тот самый неявный ключ, а содержимое — пользовательская информация c. Игреки нужны только для балансировки, это внутренние детали структуры данных, ненужные пользователю. Иксов на самом деле нет в принципе, их хранить не нужно.

В отличие от прошлой части, этот массив не приобретает автоматически никаких свойств, вроде отсортированности. Ведь на информацию-то у нас нет никаких структурных ограничений, и она может храниться в вершинах как попало.
Если интересно - под кат
Total votes 81: ↑77 and ↓4 +73
Views43.7K
Comments 17