Pull to refresh

Лунная миссия «Берешит» — разбор аварии, анонсирование запуска разработки аппарата «Берешит 2.0»

Reading time13 min
Views14K

Поздний вечер 11 апреля 2019 года стал отправной точкой для старта нового проекта — «Берешит 2.0», так как авария первого частного аппарата при попытке совершить посадку на Луну только раззадорила инженеров и организацию SpaceIL.

Космос жесток, и Луна не сразу позволяет на себя сесть. Но с опытом и современными технологиями каждая новая попытка становится более удачной.

Ранее опубликованные материалы о миссии «Берешит»:
1. Лунная миссия «Берешит» – онлайн портал с симулятором траектории и мониторингом текущих параметров полета.

2. Лунная миссия «Берешит» – селфи на фоне Земли.

3. Лунная миссия «Берешит» – инженеры в ЦУП SpaceIL и Israel Aerospace Industries‏ (IAI) решили возникшие проблемы.

4. Лунная миссия «Берешит» – характеристики аппарата, серия маневров и самый длинный путь на Луну.

5. Лунная миссия «Берешит» — четвертый маневр завершен успешно, идет подготовка к выходу на Лунную орбиту.

6. Лунная миссия «Берешит» – первое видео с бортовой камеры и новые фотографии в космическом пространстве.

7. Лунная миссия «Берешит» — восемь вех успеха и 1 миллион долларов от «XPRIZE Foundation» (при условии удачной посадки).

8. Лунная миссия «Берешит» — 4 апреля 2019 совершен переход на лунную орбиту, впереди 7 дней полета, 6 маневров и 1 посадка.

9. Лунная миссия «Берешит»: посадка-авария-падение на Луну.

Какие успехи были достигнуты миссией «Берешит»?

Кратко о миссии «Берешит»: 8 лет разработки, стоимость проекта 100 миллионов долларов, 200 добровольцев-ученых и инженеров, 47 дней полета и более 6.5 миллионов километров преодолено, на старте 380 килограмм топлива, форсированный двигатель «LEROS 2b», 6 бортовых камер, магнетометр, массив лазерных уголковых отражателей, и 1 попытка посадки, при которой 150-килограмовый аппарат с 76-ью килограммами топлива (гидразина) в баках с высокой скоростью, далеко пролетев зону планируемой посадки, упал на поверхность Луны.

Аппарат «Берешит» на орбите Луны и во время посадки использовал магнетометр и передал в ЦУП некоторую часть научных данных о магнитном поле Луны.

Теперь Израиль – 7-я страна, которая вывела на орбиту Луны свой космический аппарат (и продержала его там 7 суток).

Список стран (первые их аппараты учтены) с аппаратами на орбите Луны:

1. Луна-10, СССР, 1966 год;
2. Lunar Orbiter 1, США, 1966 год;
3. Hagoromo, Япония, 1990 год;
4. SMART-1, ESA, 2005 год;
5. Чанъэ-1, Китай, 2007 год;
6. Чандраян-1, Индия, 2008 год;
7. Берешит, Израиль, 2019 год.

И еще, теперь Израиль – 7-я страна, которая уронила на поверхность Луны свой космический аппарат (хоть и в процессе посадки, который перешел в неуправляемое фатальное падение).



Предполагается, что диаметр образовавшегося кратера после падения от 3 до 5 метров. Аппарат «Берешит» врезался в поверхность Луны под малым углом (~8°), кратер может быть вытянутым.

Стоимость компонентов аппарата «Берешит» (картинка взята отсюда):



Основные характеристики миссии и лунного аппарата «Берешит»:
— начало миссии: 22 февраля 2019 года;

— окончание миссии: разбился о поверхность Луны на финальной стадии посадки 11 апреля 2019 года;

— траектория движения до Луны (фактически – максимальная из возможных): сложная, изменяемая путем выполнения серии маневров (включение двигателей на несколько секунд или даже минут) для увеличения апогея своей эллиптической обиты после каждого витка вокруг Земли;

— высота аппарата «Берешит» составляет около 1,5 метра, диаметр 2 метра (2.3 метра между посадочными опорами);

— масса 530 килограмм с топливом (масса топлива – 380 кг), 150 кг без топлива;

— основной двигатель: модификация LEROS 2b;

— основной элемент бортового компьютера: двухядерный процессор Gaisler HiRel GR712RC;

— шесть 8-мегапиксельных камер Imperx Bobcat B3320C с оптикой Ruda;

— научные приборы: магнетометр, массив лазерных уголковых отражателей.



Аппарат «Берешит» разработан организаций SpaceIL, которая поддерживается в основном частными инвесторами, в том числе американским магнатом Шелдоном Адельсоном и миллиардером Моррисом Каном, которые так же являются соучределями Amdocs (DOX), одной из крупнейших компаний Израиля.

Силами и средствами лишь одной небольшой частной компании отправить в космос лунный аппарат невозможно, но с помощью международного космического сообщества можно превратить идею в реализуемый на данный момент полноценный проект.

Участники проекта, задействованные в миссии «Берешит»:

— команда молодых израильских ученых и инженеров из компании SpaceIL,

— NASA (США),

— ISA (израильское космическое агентство),

— IAI (концерн «Авиационная промышленность Израиля»‏),

— компания Spaceflight Industries (США, организатор вывода аппарата «Берешит» на орбиту),

— компания SpaceX (США, ракета-носитель Falcon 9),

— Шведская космическая корпорация (Swedish Space Corporation),

— компания Cobham (Швеция),

— компания Ramon Chips (Израиль).



Ведь SpaceIL – это по мировым меркам небольшая организация, в ее штат входят порядка 200 человек, причем большая часть из них — это добровольцы-ученые и инженеры, которые “стремятся содействовать развитию технологического и научного прогресса в Израиле”.

Что случилось при посадке аппарата «Берешит» 11 апреля 2019 года?

На самом деле, проблемы с аппаратом «Берешит» начались почти сразу после старта.

Февраль 2019 года:

Засветка солнечными лучами датчиков положения аппарата (датчики оказали очень чувствительны к такому «ослеплению»), что может повлиять на ориентацию аппарата в пространстве.

Решение: была выполнена программная компенсация по обработке данных с датчиков и уменьшения их чувствительности, произведены дополнительные многократные проверки новых данных с датчиков аппарата.


На этапе подготовки перед выполнением второго маневра включения двигателей, бортовой компьютер аппарата «Берешит» неожиданно перезагрузился, и этап выполнения маневра был автоматически отменен. Инженеры SpaceIL и IAI начали анализировать ситуацию.
На борту возникла неполадка, которая ограничивала маневренность аппарата.

Решение: инженеры SpaceIL и IAI устранили сбой в компьютерной системе аппарата «Берешит», теперь аппарат «Берешит» продолжает свой полет к Луне в штатном режиме.


Далее, SpaceIL не анонсировало новых неполадок или проблем с аппаратом «Берешит», однако, перед лунными маневрами, в отчете был такой слайд, на котором перезагрузок\отказов в работе БК, оказывается, было больше одного – несколько и даже больше, чем ожидали инженеры, причем по причине жесткой космической среды.

Проблемы и решения, которые были в космосе (оказывается, было много перезагрузок БК):



Таким образом, можно было ожидать, что после 1128 часов полета (47 суток), проблемы с внутренними компонентами аппарата «Берешит» могут стать фатальными, а их исправление невозможно, в случае отказа элементов или их нештатной работе под серьезной нагрузкой и влиянием космической среды.

Посадка аппарата на Луну – это сложный процесс, при котором бортовой компьютер выполняет большой объем задач: управление режимами работы двигателей, анализ телеметрии и данных с датчиков (положения, высоты, скорости, посадки и так далее), корректировка текущего положения аппарата, согласно посадочной траектории и фактическим координатам, адаптивный расход топлива, передача данных с помощью системы связи.

И если при посадке возникает нештатная ситуация с одним или несколькими датчиками, то этот момент можно компенсировать в автоматическом режиме, если есть резервная схема, или путем перезапуска (перезагрузки) бортовой компьютерной системы, если время на этот процесс есть.

В ручном режиме и в реальном времени инженеры в ЦУП не управляли аппаратом «Берешит», посадку проводил бортовой компьютер, после выхода аппарата за «точку невозврата», когда уже оставалось только выполнять процедуру посадки, команды которой были получены ранее бортовым компьютером.

А вот учесть ситуацию и компенсировать проблемы, когда несколько элементов выйдут из строя каскадом, а потом из-за их отказов начнутся отключения главных компонентов аппарата (двигателей, системы телеметрии, бортового компьютера) – это сложно и для аппарата такого уровня (без резервирования систем управления), как показала практика, невозможно.

Что еще известно об аппаратных и программных компонентах аппарата «Берешит»

— один (1) двигатель тягой 430Н и восемь (8) маневровых двигателей тягой по 25Н. Маневровые двигатели использовались при посадке в помощь основному;

— температура электроники поддерживается в диапазоне от -10°C до +40°C. Большая часть электричества расходуется на обогрев электроники (системы охлаждения нет);

— бортовой компьютер один (1), не продублирован;

— звездный датчик для ориентации аппарата «Берешит» оснащен черным конусом для поглощения сторонних лучей, однако, при отделении аппарата «Берешит» от спутников после старта оказалось, что конус загрязнился, с этой проблемой инженеры справились, выяснив под какими углами отражения не происходит и внесли коррективы в программный алгоритм обработки данных с датчика (с помощью программных патчей);

— было несколько перезагрузок компьютера в процессе полета до Луны;

— программный код управления, команды и работа с бортовым компьютером — на языке С;

— из-за того, что компьютер только один, при перезагрузке все обновления (патчи) стираются и их нужно дополнительно загружать заново в систему;

— скорость передачи данных низкая: одна фотография большого разрешения (с камеры 8 Mpx) загружается 40 минут;

— DLR (Немецкий аэрокосмический центр) проводил тестирование механизма посадки аппарата «Берешит».

Команда SpaceIL: Most of them are aeronautics engineers and physicists. But there are some younger members that were trained by the IDF's satellite operations unit.

Аппаратные системы «Берешит», отказ которых мог привести к нештатному выполнению этапов процедуры посадки и падению:


Двигатель аппарата «Берешит».

Двигатель аппарата «Берешит» — это специальный адаптированный (для миссии «Берешит» была сделана его доработка путем укорачивания сопла и прибавки тяги) химический ракетный блок семейства LEROS (для применения на спутниковых платформах) — модификация LEROS 2b на гидразине (монометилгидразине) с тягой в 45 кгс (441H), что немного больше его штатных характеристик в 41,5 кгс (407H).





Есть предположение, что данный двигатель не был рассчитан на многократные включения и он не дросселируется, хотя в ходе выполнения миссии «Берешит» были многократные включения основного двигателя на несколько минут, а при посадке десятки минут.

Общая тяга маневровых двигателей 8*25H = 200H (половина от основного). То есть, при отключении основного двигателя, будет падение тяги в три раза, что и наблюдалось при посадке.

Так же зафиксированы выключения двигателей во время посадки:

Доплеровская кривая посадки-падения аппарата «Берешит», около 19:19 торможение почти прекратилось:



Бортовой компьютер.



Cobham Gaisler's HiRel GR712RC processor

В качестве основного элемента бортового компьютера в аппарате «Берешит» используется двухядерный процессор Gaisler HiRel GR712RC компании Cobham.

Технологически чип базируется на основе LEON SPARC и произведен с использованием уникальной радиационно-стойкой кремниевой технологии.

Компания SpaceIL стала первым заказчиком данного процессора и инженеры SpaceIL написали для него специальное программное обеспечение еще до осуществления фактической поставки и прогонки на аппарате «Берешит».

GR712RC — двухъядерный процессор LEON3FT SPARC V8. Может работать на частоте до 125 МГц во всем диапазоне военных частот. Это обеспечивает до 300 DMIPS и 250 MFLOPS пиковой производительности. Интегрирует расширенные протоколы интерфейса, в том числе SpaceWire, CAN, SatCAN, UART, 1553B, Ethernet, SPI, I2C, GPIO и другие. Имеет высокоскоростные интерфейсные шины для внешней памяти SDRAM / SRAM / PROM / EEROM / NOR-FLASH. Доказанная радиационная стойкость — до 300 крад. Низкое энергопотребление.





По уточненным данным — этот процессор произведен по самой обычной коммерчески доступной технологии (TowerJazz 180 нм, made in Israel), примерно такой же, на которой контроллеры для электрочайников делают. Обеспечение радстойкости без вмешательства в технологию, за счет схемотехники и топологии элементов, что обходится на порядок-другой дешевле, чем если бы техпроцесс разрабатывали специально.

Бортовой компьютер аппарата «Берешит» до посадки уже несколько раз перезапускался из-за влияния космической среды (радиация, температура).

TT&C.

Система слежения, телеметрии и передачи команд управления (TT&C — tracking, telemetry and command subsystem), используемая в этом проекте, на финальной стадии посадки два (2!) раза «зависала», хотя ее статус был «ОК»

Датчики и элементы систем аппарата «Берешит» в окне данных телеметрии:



Как зависала система телеметрии:





Вот что видели инженеры в ЦУП при посадке, согласно данным телеметрии:

Штатный режим посадки:











А вот тут уже начались проблемы с отключением двигателя, «зависанием» данных телеметрии и нештатными показаниями скоростей, которые на расчетных высотах должны быть совсем другие.

















23:03 Telemetry indicator turns green. Sub State is Orientation.

25:04 Sub State changes to Braking.

25:20 «We are past the point of no return.»

25:26 The Point of No Return indicator turns black.

25:52 Vertical velocity display turns green.

28:16 Telemetry indicator is no longer green.

28:20 Telemetry indicator momentarily turns green, then is no longer green.

29.37 Distance is shown as 210 km.

29:50 Distance changes to 385 km.

30:03 Distance changes to 370 km.

30:40 Telemetry indicator is green.

30:51 Distance is 314 km.

31:33 Beresheet selfie is shown. Altitude approx 22 km??? Telemetry is green.

31:50 Telemetry indicator is no longer green.

31:55 to 32:29 "[inaudible] kill it." "[More inaudible mission chatter] busy."

32:48 Telemetry screen is shown. Telemetry indicator is light yellow. Altitude is 14095 m. Horizontal velocity is 955.5 m/s. Vertical velocity is 24.8 m/s. Main engine is on. Horizontal velocity is light yellow. Other parameters are green, except for the telemetry indicator.

32:49 All engines are on.

32:51 All engines are off.

32:55 Main engine is on.

32:57 All engines are on.

32:59 Main engine is on. Distance is 183.8 km.

33:01 — 33:03 «IMUstein not okay.»

33:02 All engines are on.

33:05 Main engine is on.

33:07 All engines are on.

33:09 Main engine is on.

33:11 All engines are on.

33:13 Main engine is on.

33:16 All engines are on.

33:20 Telemetry indicator turns green. All engines are off. All displays remain static (no change).

33:32 Telemetry indicator is no longer green. All engines are off. All displays remain static (no change).

34:24 Telemetry indicator turns green. All engines are off, yet supposedly turn on. Vertical acceleration on the Z axis is fixed at 0.6. «We currently have a problem in one of our inertial measurement units.» Vertical velocity starts to steadily increase. Altitude continues to steadily decrease. Vertical acceleration on the Z axis becomes fixed at 0.6. Main engine probably is not on.

Telemetry indicator intermittently turns green and then turns light yellow, up until the following video time stamp.

34:56 Telemetry indicator is no longer green. Although all engines are shown as on, vertical velocity continues to increase. Vertical acceleration on the Z axis remains fixed at 0.6. Main engine probably is not on.

36:25 — 36:33 «We seem to have a problem with our main engine. We are resetting the spacecraft to try to enable the engine.»

36:40 Telemetry indicator is green. All engines appear to be on, yet Z axis acceleration remains fixed at 0.6 m/s. Altitude is 678 meters. Horizontal and vertical velocities are 948.1 m/s and 130.1 m/s respectively.

36:44 Last telemetry data. Telemetry indicator is green. All engines appear to be on. Z axis acceleration changes to 0.7 m/s. Final altitude is 149 meters. Final horizontal and vertical velocities are 946.7 and 134.3 m/s respectively. Main engine does not appear to be functioning properly.

Последние 4 секунды жизни аппарата по данным в ЦУП (с 678 до 149 метров снижение):









В 19:23 данные телеметрии совсем перестали поступать.

Предварительно – проблемы начались на высоте 14 км, основной двигатель в процессе посадки выключился, а после его перезапуска уже было слишком поздно – аппарат не смог затормозить корректно, эта неполадка привела к жесткому падению на высокой скорости и с высоты 150 метров на Луну.

Инерциальный блок ориентации (inertial measurement unit – IMU1, IMU2) – узлы продублированы.

А вот это интересно, так как тут два блока использовались и их данные были очень важны для бортового компьютера.

Уже ранее из-за отказов подобных модулей были аварии – как с аппаратом «Скиапарелли» на Марсе в 2016 году.

Оказалось, что фатальная ошибка в работе ПО «Скиапарелли» произошла из-за проблем в работе «измерителя инерции» (IMU), устройства, измеряющего скорость вращения модуля вокруг своей оси.

Данные с этого прибора, как объясняют инженеры, учитывались при обработке данных о высоте полета, поступающих с радаров «Скиапарелли». В один момент в работе IMU произошел сбой, в результате чего он «измерил» аномально высокую скорость вращения лендера, которая выходила за пределы допустимых значений. Подобные сбои являются нормой в работе инерциальных датчиков, и обычно для их подавления ученые «сглаживают» сигнал и сравнивают данные за текущий момент с результатами, полученными в прошлые моменты времени.

Но в данном случае IMU передавал данные на главный компьютер «Скиапарелли» неожиданно долго, на протяжении секунды, что «обмануло» ПО модуля и заставило его считать эти измерения реальными данными, а не аномалией. Неправильные значения были учтены при расчете высоты модуля, в результате чего бортовой компьютер «Скиапарелли» получил отрицательные значения высоты.

Модуль посчитал, что он находится даже не на поверхности Марса, а под ней, что заставило его на высоте 3,7 км инициировать финальную стадию процедуры посадки, отделить парашюты и выключить двигатели.


В аппарате «Берешит» использовался такой модуль IMU: STIM300.



У данного модуля характеристики по радиационной защите не высокого уровня, поэтому использование подобных устройств на Луне, возможно, будет еще более продуманно инженерами SpaceIL далее в новых миссиях.

Так как было заявление от SpaceIL после аварии: «Problem in one of Beresheet's inertial measurement units. Ground controllers lost telemetry for a few moments but have reacquired telemetry.»

Действительно ли модуль (или оба модуля) IMU аппарата «Берешит» выдали некорректные данные (в том числе измерение угловых и линейных ускорений стало невозможно) для бортового компьютера и по какой причине – это еще находится в расследовании инженерами SpaceIL

Однако, пока что понятно, что у аппарата «Берешит» произошел технический сбой в работе одного из компонентов, который привел к отключению двигателей, что не позволило аппарату снизить скорость спуска на поверхность Луны.

Когда двигатели были перезапущены, то уже не смогли выполнить полное торможение, оказалось, что скорость аппарата была слишком большой, а высота до поверхности Луны критически уменьшалась, и произошло разрушительное столкновение.



Последняя фотография с аппарата «Берешит» так же ставит немного в тупик. Так как на ней видна лунная поверхность в 1000 км от планируемой зоны посадки в Море Ясности.

Последний кадр (опубликованный официально) с аппарата «Берешит» (с высоты 8 км):



Таким образом, найти хоть что-то от аппарата «Берешит» будет очень сложно, так как район поиска очень обширный:



Хотя немного понятно, где искать (200 км до зоны посадки «Apollo 11»):





В NASA планируют с помощью зонда LRO обследовать район падения аппарата «Берешит», в надежде, что элементы массива лазерных уголковых отражателей не разрушились и будут находится на поверхности Луны.

Отражатели были закреплены на верхней части аппарата и при его падении могли отскочить, разлететься, перевернуться и закопаться в лунном грунте. Но даже если только часть отражателя будет доступна для отражения светового импульса — это будет зафиксировано LRO.

Лазерный альтиметр LRO (лунный орбитальный зонд NASA), предназначенный для составления карты высот, будет посылать лазерные световые импульсы на уголковый отражатель в месте падения аппарата «Берешит», а затем измерять, сколько времени требуется свету, чтобы вернуться назад.

Используя эту технику, инженеры NASA и SpaceIL планируют, что смогут определить местоположение останков аппарата «Берешит».



Хотя тут тоже интересно, в SpaceIL есть еще фото падения, но они их не публикуют:

Is this really the last photo received from Beresheet? When exactly was it taken? I ask because the Hypatia crater is much more southern than the planned landing site.

No it is not the last picture that was taken. We have one picture that was taken closer to landing but has not been confirmed to be published yet. I assume that it will be published soon.


Что же будет дальше с миссией «Берешит»?

Анонсирована разработка нового космического проекта — «Берешит 2.0»



Премьер-министр Израиля Биньямин Нетаньяху пообещал, что государство примет участие во второй попытке отправить автоматическую станцию на Луну.

«Мы собираемся запустить „Берешит-2“. Государство Израиль участвовало в запуске первого космического аппарата и будет участвовать в запуске второго. Я надеюсь, что в этот раз все пройдет успешно. В таком случае мы действительно станем четвертой страной в мире, которая совершит посадку на Луну», — сказал Нетаньяху на заседании правительства.

Планируется, что проект «Берешит 2.0» будет более серьезным и дорогостоящим (по сравнению с первым), но все еще будет частным.



Организация SpaceIL также возьмет на себя основное управление новым проектом «Берешит 2.0» и также будет оставаться некоммерческой организацией.

Планируемый срок реализации проекта «Берешит 2.0»: 2-3 года.

Это прекрасно, когда страна, инженеры и люди не перестают верить в победу.



No dream is beyond your reach, if you truly want it!

И на сладкое:

Lego model of Beresheet
Tags:
Hubs:
If this publication inspired you and you want to support the author, do not hesitate to click on the button
Total votes 58: ↑55 and ↓3+52
Comments48

Articles