Pull to refresh
202.32
Rating

Python

Interpreted high-level programming language for general-purpose programming

Show first
  • New
  • Top
Rating limit
  • All
  • ≥0
  • ≥10
  • ≥25
  • ≥50
  • ≥100

News

Show more

You are standing at a red light at an empty intersection. How to make traffic lights smarter?

PythonIT InfrastructureBig Data

Types of smart traffic lights: adaptive and neural networks

Adaptive works at relatively simple intersections, where the rules and possibilities for switching phases are quite obvious. Adaptive management is only applicable where there is no constant loading in all directions, otherwise it simply has nothing to adapt to – there are no free time windows. The first adaptive control intersections appeared in the United States in the early 70s of the last century. Unfortunately, they have reached Russia only now, their number according to some estimates does not exceed 3,000 in the country.

Neural networks – a higher level of traffic regulation. They take into account a lot of factors at once, which are not even always obvious. Their result is based on self-learning: the computer receives live data on the bandwidth and selects the maximum value by all possible algorithms, so that in total, as many vehicles as possible pass from all sides in a comfortable mode per unit of time. How this is done, usually programmers answer – we do not know, the neural network is a black box, but we will reveal the basic principles to you…

Adaptive traffic lights use, at least, leading companies in Russia, rather outdated technology for counting vehicles at intersections: physical sensors or video background detector. A capacitive sensor or an induction loop only sees the vehicle at the installation site-for a few meters, unless of course you spend millions on laying them along the entire length of the roadway. The video background detector shows only the filling of the roadway with vehicles relative to this roadway. The camera should clearly see this area, which is quite difficult at a long distance due to the perspective and is highly susceptible to atmospheric interference: even a light snowstorm will be diagnosed as the presence of traffic – the background video detector does not distinguish the type of detection.

Read more
Total votes 3: ↑3 and ↓0 +3
Views839
Comments 0

Data Science Digest — 21.04.21

PythonAlgorithmsBig DataMachine learningArtificial Intelligence

Hi All,

I’m pleased to invite you all to enroll in the Lviv Data Science Summer School, to delve into advanced methods and tools of Data Science and Machine Learning, including such domains as CV, NLP, Healthcare, Social Network Analysis, and Urban Data Science. The courses are practice-oriented and are geared towards undergraduates, Ph.D. students, and young professionals (intermediate level). The studies begin July 19–30 and will be hosted online. Make sure to apply — Spots are running fast!

If you’re more used to getting updates every day, follow us on social media:

Telegram
Twitter
LinkedIn
Facebook

Regards,
Dmitry Spodarets.

Read more
Total votes 3: ↑2 and ↓1 +1
Views295
Comments 0

Neural network Telegram bot with StyleGAN and GPT-2

PythonMachine learningArtificial IntelligenceSocial networks and communities

The Beginning


So we have already played with different neural networks. Cursed image generation using GANs, deep texts from GPT-2 — we have seen it all.


This time I wanted to create a neural entity that would act like a beauty blogger. This meant it would have to post pictures like Instagram influencers do and generate the same kind of narcissistic texts. \


Initially I planned to post the neural content on Instagram but using the Facebook Graph API which is needed to go beyond read-only was too painful for me. So I reverted to Telegram which is one of my favorite social products overall.


The name of the entity/channel (Aida Enelpi) is a bad neural-oriented pun mostly generated by the bot itself.


One of the first posts generated by Aida

Read more →
Rating 0
Views674
Comments 1

Data Science Digest — We Are Back

PythonAlgorithmsBig DataMachine learningArtificial Intelligence

Hi All,

I have some good news for you…

Data Science Digest is back! We’ve been “offline” for a while, but no worries — You’ll receive regular digest updates with top news and resources on AI/ML/DS every Wednesday, starting today.

If you’re more used to getting updates every day, follow us on social media:

Telegram - https://t.me/DataScienceDigest
Twitter - https://twitter.com/Data_Digest
LinkedIn - https://www.linkedin.com/company/data-science-digest/
Facebook - https://www.facebook.com/DataScienceDigest/

And finally, your feedback is very much appreciated. Feel free to share any ideas with me and the team, and we’ll do our best to make Data Science Digest a better place for all.

Regards,
Dmitry Spodarets.

Read more
Rating 0
Views472
Comments 0

HDB++ TANGO Archiving System

Open sourcePythonIT InfrastructureData storageData storages
Translation
Tutorial
main

What is HDB++?


This is a TANGO archiving system, allows you to save data received from devices in the TANGO system.


Working with Linux will be described here (TangoBox 9.3 on base Ubuntu 18.04), this is a ready-made system where everything is configured.


What is the article about?


  • System architecture.
  • How to set up archiving.

It took me ~ 2 weeks to understand the architecture and write my own scripts for python for this case.


What is it for?


Allows you to store the history of the readings of your equipment.


  • You don't need to think about how to store data in the database.
  • You just need to specify which attributes to archive from which equipment.
Read more →
Rating 0
Views363
Comments 0

Coins classifier Neural Network: Head or Tail?

PythonData MiningBig DataData EngineeringTensorFlow

Home of this article: https://robotics.snowcron.com/coins/02_head_or_tail.htm

The global objective of these articles is to build a coin classifier, capable of scanning your pocket change and find rare / valuable coins. This is a second article in a series, so let me remind you what happened earlier (https://habr.com/ru/post/538958/).

During previous step we got a rather large dataset composed of pairs of images, loaded from an online coins site meshok.ru. Those images were uploaded to the Internet by people we do not know, and though they are supposed to contain coin's head in one image and tail in the other, we can not rule out a situation when we have two heads and no tail and vice versa. Also at the moment we have no idea which image contains head and which contains tail: this might be important when we feed data to our final classifier.

So let's write a program to distinguish heads from tails. It is a rather simple task, involving a convolutional neural network that is using transfer learning.

Same way as before, we are going to use Google Colab environment, taking the advantage of a free video card they grant us an access to. We will store data on a Google Drive, so first thing we need is to allow Colab to access the Drive:

Читать далее
Rating 0
Views527
Comments 0

Implementing Offline traceroute Tool Using Python

PythonNetwork technologies
Translation

Hey everyone! This post was born from a question asked by an IT forum member. The summary of the question looked as follows:


  • There is a set of text files containing routing tables collected from various network devices.
  • Each file represents one device.
  • Device platforms and routing table formats may vary.
  • It is required to analyze a routing path from any device to an arbitrary subnet or host on-demand.
  • Resulting output should contain a list of routing table entries that are used for the routing to the given destination on each hop.

The one who asked a question worked as a TAC engineer. It is often that they collect or receive from the customers some text 'snapshots' of the network state for further offline analysis while troubleshooting the issues. Some automation could really save a lot of time.


I found this task interesting and also applicable to my own needs, so I decided to write a Proof-of-Concept implementation in Python 3 for Cisco IOS, IOS-XE, and ASA routing table format.


In this article, I’ll try to reconstruct the resulting script development process and my considerations behind each step.


Let’s get started.

Read more →
Rating 0
Views1.4K
Comments 0

Coins Classification using Neural Networks

PythonBig DataData Engineering
Tutorial

See more at robotics.snowcron.comThis is the first article in a serie dedicated to coins classification.Having countless "dogs vs cats" or "find a pedestrian on the street" classifiers all over the Internet, coins classification doesn't look like a difficult task. At first. Unfortunately, it is degree of magnitude harder - a formidable challenge indeed. You can easily tell heads of tails? Great. Can you figure out if the number is 1 mm shifted to the left? See, from classifier's view it is still the same head... while it can make a difference between a common coin priced according to the number on it and a rare one, 1000 times more expensive.Of course, we can do what we usually do in image classification: provide 10,000 sample images... No, wait, we can not. Some types of coins are rare indeed - you need to sort through a BASKET (10 liters) of coins to find one. Easy arithmetics suggests that to get 10000 images of DIFFERENT coins you will need 10,000 baskets of coins to start with. Well, and unlimited time.So it is not that easy.Anyway, we are going to begin with getting large number of images and work from there. We will use Russian coins as an example, as Russia had money reform in 1994 and so the number of coins one can expect to find in the pocket is limited. Unlike USA with its 200 years of monetary history. And yes, we are ONLY going to focus on current coins: the ultimate goal of our work is to write a program for smartphone to classify coins you have received in a grocery store as a change.Which makes things even worse, as we can not count on good lighting and quality cameras anymore. But we'll still try.In addition to "only Russian coins, beginning from 1994", we are going to add an extra limitation: no special occasion coins. Those coins look distinctive, so anyone can figure that this coin is special. We focus on REGULAR coins. Which limits their number severely.Don't take me wrong: if we need to apply the same approach to a full list of coins... it will work. But I got 15 GB of images for that limited set, can you imagine how large the complete set will be?!To get images, I am going to scan one of the largest Russian coins site "meshok.ru".This site allows buyers and sellers to find each other; sellers can upload images... just what we need. Unfortunately, a business-oriented seller can easily upload his 1 rouble image to 1, 2, 5, 10 roubles topics, just to increase the exposure.

So we can not count on the topic name, we have to determine what coin is on the photo ourselves.To scan the site, a simple scanner was written, based on the Python's Beautiful Soup library. In just few hours I got over 50,000 photos. Not a lot by Machine Learning standards, but definitely a start.After we got the images, we have to - unfortunately - revisit them by hand, looking for images we do not want in our training set, or for images that should be edited somehow. For example, someone could have uploaded a photo of his cat. We don't need a cat in our dataset.First, we delete all images, that can not be split to head/hail.

Читать далее
Rating 0
Views522
Comments 0

Doing «Data Science» even if you have never heard the words before

PythonAlgorithmsMathematicsMachine learningArtificial Intelligence

There’s a lot of talk about machine learning nowadays. A big topic – but, for a lot of people, covered by this terrible layer of mystery. Like black magic – the chosen ones’ art, above the mere mortal for sure. One keeps hearing the words “numpy”, “pandas”, “scikit-learn” - and looking each up produces an equivalent of a three-tome work in documentation.

I’d like to shatter some of this mystery today. Let’s do some machine learning, find some patterns in our data – perhaps even make some predictions. With good old Python only – no 2-gigabyte library, and no arcane knowledge needed beforehand.

Interested? Come join us.

Read more
Rating 0
Views811
Comments 0

Visualizing Network Topologies: Zero to Hero in Two Days

PythonCiscoNetwork technologies
Translation

Hey everyone! This is a follow-up article on a local Cisco Russia DevNet Marathon online event I attended in May 2020. It was a series of educational webinars on network automation followed by daily challenges based on the discussed topics.
On a final day, the participants were challenged to automate a topology analysis and visualization of an arbitrary network segment and, optionally, track and visualize the changes.


The task was definitely not trivial and not widely covered in public blog posts. In this article, I would like to break down my own solution that finally took first place and describe the selected toolset and considerations.

Let's get started.


Read more →
Total votes 2: ↑2 and ↓0 +2
Views8.4K
Comments 0

Big Data Tools EAP 12 Is Out: Experimental Python Support and Search Function in Zeppelin Notebooks

JetBrains corporate blogPythonScalaBig Data

Update 12 of the Big Data Tools plugin for IntelliJ IDEA Ultimate, PyCharm Professional Edition, and DataGrip has been released. You can install it from the JetBrains Plugin Repository or from inside your IDE. The plugin allows you to edit Zeppelin notebooks, upload files to cloud filesystems, and monitor Hadoop and Spark clusters.


In this release, we've added experimental Python support and global search inside Zeppelin notebooks. We’ve also addressed a variety of bugs. Let's talk about the details.


Read more →
Rating 0
Views477
Comments 1

Toxic Comments Detection in Russian

Mail.ru Group corporate blogPythonMachine learningSocial networks and communities

Currently, social network sites tend to be one of the major communication platforms in both offline and online space. Freedom of expression of various points of view, including toxic, aggressive, and abusive comments, might have a long-term negative impact on people’s opinions and social cohesion. As a consequence, the ability to automatically identify and moderate toxic content on the Internet to eliminate the negative consequences is one of the necessary tasks for modern society. This paper aims at the automatic detection of toxic comments in the Russian language. As a source of data, we utilized anonymously published Kaggle dataset and additionally validated its annotation quality. To build a classification model, we performed fine-tuning of two versions of Multilingual Universal Sentence Encoder, Bidirectional Encoder Representations from Transformers, and ruBERT. Finetuned ruBERT achieved F1 = 92.20%, demonstrating the best classification score. We made trained models and code samples publicly available to the research community.
Read more →
Total votes 18: ↑17 and ↓1 +16
Views3.5K
Comments 4

Making python's dream of multithreading come true

Python

Intro


So you are writing some CPU-intensive code in Python and really trying to find ways out of its single-threaded prison. You might be looking towards Numba's "nopython parallel" mode, you might be using forked processes with multiprocessing, you might be writing microservices with database-like coordinators, or even writing your own multithreaded programs in C/C++ just like creators of TensorFlow did.


In this article I'm describing a rationale for my pet project where I try to implement facilities for general purpose multitasking to be used in a form of simple python code, employing a database-like approach for interpreters communication, while keeping the GIL (Global Interpreter Lock) and trying to be as pythonic as possible.



It could also become handy in the light of upcoming multiple interpreters support in CPython.


As far as I know, nobody came that far in trying to provide Python program with native shareable storage. The last closest attempt was Python Object Sharing which is pretty much dead by now. I hope my project won't meet the same fate.

Read more →
Total votes 4: ↑4 and ↓0 +4
Views3.1K
Comments 0

Leading Full Stack Development Companies to Check Out in 2020

PythonNode.JSMongoDB
Given the diverse range of responsibilities and technologies out there today, it is no wonder companies choose to employ full stack development services to achieve end goals without hiring multiple people and struggling to attain streamlined workflows.

What is full-stack development?


Full-stack development services refer to the development of both client-side and server-side interfaces of any application. In technical terms, these are the front-end and back-end, respectively.

A client-side-only developer typically is responsible for what users see and can interact within an application or a website. They use a specific set of languages, including HTML and CSS. They also use particular frameworks and libraries that include AngularJS, Bootstrap and ReactJS. On the other hand, a back-end developer typically focuses on how the website works and is built. The primary languages are Python, JavaScript and C++ among others.

To hire a full-stack web developer is to get someone who is well-versed in both front-end and back-end development and has the skills and technological prowess to step in at any stage of a project.

What qualities does the ideal full-stack developer possess?


If you’re looking to hire a remote full-stack web developer or a full-time one, consider looking out for these qualities:

  • Mastery over front-end technologies
  • Knowledge of at least one server-side programming language
  • Concrete understanding of DBMS technology
  • UI/UX design skills
  • Experience in handling servers
  • Knowledge of Git and version control systems
  • In-depth understanding of web services or API
  • Awareness of security concerns and frameworks
  • Understanding of algorithms and data structure
Read more →
Total votes 4: ↑3 and ↓1 +2
Views1.8K
Comments 5

Machine learning in browser: ways to cook up a model

PythonNode.JSMachine learning

With ML projects still on the rise we are yet to see integrated solutions in almost every device around us. The need for processing power, memory and experimentation has led to machine learning and DL frameworks targeting desktop computers first. However once trained, a model may be executed in a more constrained environment on a smartphone or on an IoT device. A particularly interesting environment to run the model on is browser. Browser-based solutions may be used on a wide range of devices, desktop and mobile, online and offline. The topic of this post is how to prepare a model for the in-browser usage.

This post presents an end-to-end implementations of a model creation in Python and Node.js. The end goal is to create a model and to use it in a browser. I'll use TensorFlow and TensorFlow.js as main frameworks. One could train a model in Python and convert it to JS. Alternative is to train a model directly in javascript, hence omitting the conversion step.

I have more experience in Python and use it in my everyday work. I occasionally use javascript, but have very little experience in the contemporary front-end development. My hope from this post that python developers with little JS experience could use it to kick start their JS usage.

Read more
Total votes 3: ↑3 and ↓0 +3
Views1.1K
Comments 0

Authors' contribution