Comments 350
Хотим чтобы машина не сходила с ума от велосипеда прикрученного к багажнику — больше семплов.

Каждый раз читаю этот анекдот про «че тут думать — прыгать надо» — каждый раз смешно…
А есть пример нейронной сети, которая решает 2 разные задачи без переобучения?

"
Однако Google разработала систему, которая способна качественно решать восемь задач одновременно. Многозадачную систему машинного обучения назвали MultiModel. Она научилась распознавать объекты на изображениях, вставлять субтитры, распознавать речь, переводить между четырьмя парами языков с соблюдением правил грамматики и синтаксиса — и она делает всё это одновременно!"

Звучит как квадрокоптерный чайник с вайфаем. Но с другой стороны, возможно в этом и есть ключ к созданию ИИ, мы ведь и есть самообучаемые квадрокоптерные чайники с вайфаем

Моя мысль такова, что нейросети при переобучении с одного набора данных обычно обучаются сразу на двух наборах данных с откатом в режим «детства» с максимальным значением для корректировки весов, чтобы и старое не забыли, и новое получили. Постепенное снижение амплитуры изменений весов приводит нейросети к зрелости и неспособности обучаться дальше.
У человека нету режима «зрелости», при которой он теряет возможность в принципе обучаться. Так и нету бага в виде при обучении чему-то новому забывать полностью всю предыдущую жизнь.
Вот этот режим с постоянной возможностью дообучить нейронку без потери предшествующих знаний и является самым сложным элементом на пути к мифическому «сильному» ИИ.

Буду рад, если найдутся ссылки на новые исследования, где нейронные сети уже могут переобучаться без потери памяти, причем с возможностью постепенного обучения на малых объемам, а не прогоном 100 тыс картинок. Без читерства в виде создании новой нейросетки и присоединении ее к текущей. Человек способен всего по нескольким изображениям учиться определять новые предметы.
Так и нету бага в виде при обучении чему-то новому забывать полностью всю предыдущую жизнь.

Такой "баг" есть. Пример: программисты достаточно быстро забывают детали прошлого проекта, поэтому хорошим тоном считается документировать API и т.п. По своему опыту знаю, что детали прошлых проектов могут за несколько месяцев забываться почти полностью, если приходится запоминать детали новых.


Без читерства в виде создании новой нейросетки и присоединении ее к текущей.

Это не "читерство", а best practice на данный момент. Если (под)задача имеет алгоритмическое решение, не стоит тратить время на обучение нейросети, т.к. обучение — это долго, дорого и ненадёжно. Нейросети обучают тем (под)задачам, которые сложно решить алгоритмически. Если задача состоит из подзадач, иногда некоторые удобнее решить алгоритмически, некоторые — с помощью нейронных сетей.


Человек способен всего по нескольким изображениям учиться определять новые предметы.

Человеческая нейронная сеть устроена сложнее, чем современные искусственные, и не вполне ясно, каким образом она этому учится. Быть может, мозг тысячи раз проигрывает вариации увиденного изображения, и веса его нейронов подстраиваются в процессе.

По своему опыту знаю, что детали прошлых проектов могут за несколько месяцев забываться почти полностью, если приходится запоминать детали новых.

Под полным забыванием подразумевалось, что Вы забываете свое имя, место жительства, родителей, школьную программу вплоть до начальных классов, все выученные языки, в том числе родной. Становитесь абсолютно чистым. Либо можете забыть часть из перечисленного, т.е. новые знания взамен старых. Раньше умели различать котиков, дельфинчиков и людей, а теперь научились различать собак, но хуже стали различать котиков, людей еще хуже, а дельфинчиков уже не умеете определять. Также выясняется, что если при обучении не произносить свое имя, то после нескольких дней обучения собственное имя забывается. Приведены аналогии для обычный нейросетей.

Это не «читерство», а best practice на данный момент.

Но если проводить аналогию, то если человек не умеет считать, ему пришивают калькулятор к голове. А для каждой новой подзадачи отращивается еще один мозг — один для того, чтобы уметь готовить, другой чтобы с физикой дружить, третий для балансировки задач и отсылка к Змею Горынычу.

Человеческая нейронная сеть устроена сложнее, чем современные искусственные, и не вполне ясно, каким образом она этому учится. Быть может, мозг тысячи раз проигрывает вариации увиденного изображения, и веса его нейронов подстраиваются в процессе.

Прямой мат.модели мозга еще нет. Но есть неплохие попытки. Оттуда, например, сделал вывод, что заморочек с подстройкой весов и киданием в условия комбинаторного взрыва нет. Мозг может быть устроен проще, чем мы о нем думаем. И даже частоты у мозга небольше — до нескольких сотен герц! Причем состоит из микроколонок, что больше похоже на вычислительные способности видеокарты. И кремниевый чип с 1 ГГц, который на частоте 100 Гц будет эмулировать работу ровно одной микроколонки, на частоте 1 ГГц (1 000 000 000 Гц) сможет эмулировать работу уже 10 млн микроколонок, у каждой частота 100 Гц. Соответственно, специализированные ASIC-чипы с количеством транзисторов как у серверных высокопроизводительных процессоров смогут спокойно эмулировать мозги 500 человек в режиме реального времени даже на нынешней технологической базе! Т.е. кластер с 2 тыс таких чипов вполне может эмулировать небольшой город с населением в 1 млн человек в режиме реального времени, или 2 тыс человек со скорость х1000 (за год в эмуляторе пройдет 10 веков).
Проблема лишь в мат.аппарате для представления мозга. Он пока только развивается.
А для каждой новой подзадачи отращивается еще один мозг — один для того, чтобы уметь готовить, другой чтобы с физикой дружить, третий для балансировки задач и отсылка к Змею Горынычу.

Но разве при обучении не отращиваются новые связи нейронов?


Да, собственно, архитектура ИИ может оказаться существенно отличающейся от архитектуры биологического интеллекта. Поэтому не вижу проблемы в создании и уничтожении разнородных блоков под конкретные задачи.

Раньше умели различать котиков, дельфинчиков и людей, а теперь научились различать собак, но хуже стали различать котиков, людей еще хуже, а дельфинчиков уже не умеете определять
Ну это вроде у людей примерно так и работает. Многие мои знакомые жаловались, что им сложно различать лица китайцев, а после нескольких месяцев жизни в Китае говорили, что теперь стало сложнее различать лица европейцев
Есть принципиальная разница между постепенным совершенствованием в некоем навыке и внезапным постижением сути исследуемой системы.
Последнего как раз и не хватает.
Под полным забыванием подразумевалось, что Вы забываете свое имя, место жительства, родителей, школьную программу
Для таких вещей в долговременной памяти в мозге, судя по всему, формируются отдельные кластеры нейронов. «Нейроны бабушки», условно говоря. У мозга есть десятки нейромедиаторов, чтобы эти места больше не трогать и хранить их всю жизнь. Эти места потом очень сложно заменить. Один из самых эффективных способов лечение различных фобий как раз и заключается в том, чтобы путем постепенной подсадки новых воспоминаний заменить старые болезненные. Почти что классическое переучивание нейросети.

В искусственных нейросетях нет этого механизма защиты нужных воспоминаний, поэтому переучиваются сразу все. И это проблема. Один из путей достигнуть lifelong learning как раз в том, чтобы при каждом новом обучении сигнал шел по новым путям, не трогая сформировавшиеся долговременные воспоминания. Но тут есть проблема по каким критериям выбирать эти пути (они ведь должны частично пересекаться), да и емкость сети резко падает, что при текущих вычислительных возможностях не айс.

Я месяца три назад обнаружил, что у меня слово "имбирь" потерялось. Вспоминать название приходилось до 10 минут. Недавно занялся этим всерьёз — за несколько часов получилось восстановить. В этом случае похоже были повреждены какие-то связи с кластером, кодирующим эту последовательность звуков.


Хм. Судя по https://en.wikipedia.org/wiki/Anomic_aphasia и https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2936270/, такой тип афазии действительно связан с повреждениями в белом веществе мозга. И, исходя из незначительности повреждения, понятно, почему его не увидели на МРТ.

Вот только вы в чиселках где-то на 6-7 порядков ошиблись.
Сейчас, с точность до порядка величины, одним чипом на 1 ггц из 1 млрд процессоров пока тысячи нейронов только могут (см. truenorth, spinnaker).
1) У тысячи нейронов миллион связей, в одной микроколонке — десятки миллионов связей (причём, между двумя нейронами может быть несколько связей, кстати — штук 5-10). Вы же хотите за 1 такт работы процессора сделать 10 млн операций взятия по произвольному индексу и суммирований, а потом ещё столько же расчётов обратных взаимодействий. Количество АЛУ в современных видеокартах — единицы тысяч. Потому что на каждую операцию с float16 нужны тысячи транзисторов. Тут минимум три порядка величины вы потеряли.
2) Вам нужно где-то хранить 10^14 байт информации об этих связях. Вот тут самая большая ловушка. Вычисления последовательно на одном чипе выполнять вы можете, а вот данных столько запихать в один чип не получается. Вам нужно 10к флешек по 10 тб.
3) Вроде бы сотня герц, да, но разница в 1 мс имеет значение для определения степени изменения связи нейроном, так что более точная модель должна работать уже на 1 кГц, а не на 100 Гц.
Получается, даже если максимально упрощать, нужно по 10к процессоров на человека, а у вас как-то 0.002 получилось.
Спасибо за уточнения. Мои оценки рассматривались на множестве допущений:
>>> на каждую операцию с float16 нужны тысячи транзисторов
Считал 100 тыс транзисторов на boolean-числа для микроколонки. Это по размерам данных в 16 раз меньше.
В "Логике сознания" были битовые операции. Также сделал скидку на то, что:
1) некоторые операции можно упростить как в данном случае с float16 до boolean. Это сокращает расчеты на порядки.
2) компьютеру не нужна вся обвязка, как человеку. У человека каналов подачи информации полно — 5 «официальных» чувств и еще куча дополнительных — боль внутренних органов (не может быть отнесена к осязанию), температура, показания вестибулярного аппарата, кольцевой счетчик времени (упомянут в «Логике сознания»), кольцевые счетчики пространства (там же) и т.д.
3) одновременно не запускается 100% активности мозга, хотя такое возможно и это состояние называют эпилепсией, как и циклическое незатухающее возбуждение какой-либо закольцованной цепочки. Как и в обычном х86 процессоре не производится одновременная работа всех блоков, нескольких. Т.е. можно подгружать только активные блоки, хотя сама подгрузка сложнее и требует расчета, что дешевле — подгружать или иметь все мощности одновременно, но использовать только часть из них. Это как на FGPA вместо реализации всего процессора, происходила бы загрузка конкретных блоков в зависимости от загруженной команды. Задача подгрузки может быть упрощена за счет известности какие участки подгружать, да и есть фильтрация на неудачные «смазанные» данные (не нашел ссылки на исследования, суть которого — «эффект остановившейся стрелки» или как мозг убирает смазанные кадры и оставляет только последний удачный).

>>> нужно где-то хранить 10^14 байт информации об этих связях
сделал допущение, что будет использоваться сжатие информации типа XOR, т.е. хранится 1 значение и в радиусе N микроколонок сохраняется только разница с этим числом. Т.к. две сотни рядом стоящих микроколонок будут стремится иметь минимальную разницу и вместо хранения информации для этих двух сотен с миллионами связей будет хранение информации для десятка микроколонок, а остальные будут сохранять разницу с этими микроколонками. Это похоже на продвинутый формат MIDI, когда исходных wav-файл разбирается на сэмплы и вместо хранения сырых данных сохраняются номера семплов. А т.к. мир не хаотичен, то добавление всего тысячи семплов для 10к библиотеки увеличивает кодируемое многообразие на порядки. По сути мозг занимается добычей новых сэмплов. Не забываем про упрощение, т.к. отсекается куча данных, которые не воспринимает человек — инфра- и ультразвуки и т.д. Помимо внешней информации, внутренняя также может быть закодирована.

>>> за 1 такт работы процессора сделать 10 млн операций взятия по произвольному индексу и суммирований
У микроколонок связи между собой и внутри фиксированны. Они не меняются каждый такт. Т.е. взятие не по произвольному индексу, а по фиксированному в течении суток. Это уже сильно оптимизирует расчеты. Конечно, со временем будут изменения, поэтому тут выручит кэш пути взятия значения, который в течении от часа до нескольких недель будет неизменяемым. Я не предполагаю кэша значения.

>>> сотня герц
это одна из частот мозга, остальные вообще на 1-10 Гц. Хотя тут может быть подвох в виде наложения частот для получения более высоких частот.

В целом, можно придерживаться правила: «Это доступно прямо сейчас. Если не доступно, то зайдите в следующем году». После 20-50 итераций условие должно стать истинным, если не сработает break с какой-нибудь катастрофой.
Если кратко:
1) да, активность нужно просчитывать для всех 100% микроколонок, а на выходе «активные» — это те N, которые выдали наибольший сигнал. Чтобы узнать, чей сигнал наибольший, нужно сначала узнать все сигналы. А эпилепсия — это нарушение работы системы гашения излишнего возбуждения в коре на каком-либо уровне, а вовсе не срабатывание всех 100% нейронов. На передаче сигнала от аксонов несработавших нейронов — вы можете экономить, да, но если вы поменяете систему с pull на push, то оверхед у вас появится в другом месте: вы будете ставить много лишних сигналов цепочкам, которые не сработают.
2) веса связей меняются в течение суток, хотя и медленно, и это важно для обучения новым видам деятельности. Кстати, как у вас вообще обучение тогда будет устроено, если в течение «дня» ничего не меняется? Кто что запоминает и где?
3) информация о связях — это не биты, это номер другого нейрона (ну пусть int16) и вес связи (int8..float16). Срабатывания нейронов вызывают дендритные цепочки длиной в 10-40 связей, грубо говоря, если хотя бы 5-7 связей в цепочке активируются, и если хотя бы две таких цепочки активировалось. То есть, у вас на один нейрон 100-1000 дендритов, у каждого дендрита 10-40 связей (один нейрон с другим нейроном соединяет больше одного дендрита, да). А ещё типов нейромедиаторов не один, разные дендриты нейронов имеют разную чувствительность к разным нейромедиаторам. И вот всё это нужно помнить и просчитывать. И я не очень понимаю, как вы сделаете тут «кеширование».
4) Не путайте резонансную частоту и тактовую частоту системы. Боковые области зрения позволяют увидеть нам движение со скоростью порядка 100 Гц, зачем вообще это нужно, если медленные нейроны его не увидят? Потому что, хоть скорость срабатывания нейрона и 10-20 мс, но он может сработать на 1 мс позже или на 5 мс позже. И даже если мы говорим про резонансные частоты, то активная работа — больше 10 Гц ( ru.wikipedia.org/wiki/Бета-ритм ), а меньше 10 Гц — сон и медитация.
>>> Чтобы узнать, чей сигнал наибольший, нужно сначала узнать все сигналы
Есть же ленивые вычисления, т.е. когда нужен результат, тогда он и выдается. Большая часть данных не обрабатывается, а тупо складируется. Человек в течении дня получает кучу информации, но в конце дня вряд ли вспомнил даже номерные знаки всех увиденных машин.
Должен быть фильтр на вход. Если совпадает, тогда целая область микроколонок подключается, иначе экономит энергию. Т.е. будет 100 тыс условных областей, одновременно запустятся от 1 до 10 тыс рабочих зон, во время работы 2 тыс зон выгрузятся, вместо них запустятся другие.
Проблема в расчете накладных расходов. Память+подгрузка против постоянных ячеек.
И два варианта запуска — по фильтру, т.е. узнавание какого-то похожего образа, либо при отсутствии реакции по узнаванию, тогда подключаются новые нейроны для изучения.

>>> как у вас вообще обучение тогда будет устроено, если в течение «дня» ничего не меняется
Не совсем. Есть долгосрочная память по нескольким видам с фильтрами на вход, где ничего в течении суток не меняется. И есть кратковременная временная память, которой хватит накопить данные за 1 день.
Потом наступает режим «сна», причем двух видов с периодическим чередованием:
— разбор накопленных дня по микроколонкам
— переформирование микроколонок так, чтобы близкие по значению были рядом, а чем сильнее значения различаются, тем дальше находятся микроколонки в кластере.
В дальнейшем переформирование колонок будет минимально, т.к. чем старше человек, тем меньше нового он может встретить в обычной жизни.
Если знаний за день было минимум, т.е. был скучный день, то полученная информация максимально сильно сжимается благодаря своей однотипности.

Подозреваю, что в течении дня человек в битах получает не так уж и много информации. Для полного дня 86 400 секунд по 100 Кб данных в секунду выйдет 8 640 МБ сжатой информации. Те же буквы не запоминаются попиксельно, а как единый образ. Хотя если учитывать данные с координатами, то размеры памяти увеличатся. Также по зрению — передается информация не по абсолютному значению, а разница между двумя кадрами, причем специфически обработанная, когда одна точка реагирует на один из признаков: цвет, граница и т.д. с постепенным падением плотности данных от центра к краям, т.е. боковое зрение среагирует на резкие изменения, но не будет реагировать на плавные переходы или на неизменную информацию.
3) информация про связи в моем источнике упомянута, но я не понял логики ее работы, т.е. как так получается, что одновременно срабатывают разные кластеры в разных районах. Соответственно, я сам не понимаю, как происходит связывание отдаленных районов. В мозге нет физической нумерации нейронов, там это реализуется с помощью прокладки связи.
Я не исключаю возможности, что вся микроколонка — это кусок памяти, разбитый на машинные слова (около 144 бит) с возможными сдвигами и XOR-вычислитель, результат которого зависит от типа микроколонки. Если колонка для новой информации, то сохраняет копию старой колонки, которая наиболее близка по значению с разницей между старым и новым значениями.
Если колонка постоянной памяти, то просто при отсутствии разницы колонка сообщает — «я эту инфу храню», выставляя флаг, который берут уже соседние микроколонки для обработки.
И тут к предыдущему пункту про одновременность вычислений. Информация приходит на вход первого кластера, тот сообщает «не, мы не знаем такое» и информация передается к следующему кластеру, пока не будет найдено совпадение. Обработчики — как волны на воде от кинутого камня, т.е. одновременно обрабатывают только те, кто на гребне волны, остальные в режиме ожидания. При передаче информации сигнал затухает, но есть кластеры, передающие информацию в другие участки мозга.
Соответственно, несколько источников информационных волн должны формировать аналог фигур Хладни. И чем больше источников, тем большее разнообразие фигур, которые динамически меняются.
4) я взял максимальную частоту — гамма ритма, чтобы с запасом.
Я вижу, что в ваших рассуждениях используется очень много необоснованных, ни на чём не базирующихся предположений. На парочку самых грубых я указал, но вы придумали пару новых, ещё менее обоснованных.
Надо пробовать, делать реализацию, лишь практика заставит вас отказаться от неправильных предположений.
>>> Надо пробовать, делать реализацию
и лишь практика покажет, насколько мои утверждения являются верными.
И моя практика не гарантирует доказательства опровержения того или иного утверждения, например —
задача про простые числа:
Найти все простые числа до некоторого N (max N = max int32 = (2^31)-1 = 2 147 483 647).
При выделении массива с числами от 1 до N на каждое число потребуется 4 байта, а на весь массив 2 147 483 647 х 4 = 8 589 934 588 байтов или ~8 Гб.
Теперь вместо хранения самого числа мы заведем массив битовых значения длиной 2 147 483 647 бит, где № элемента — само число, а значение бита — является ли число простым. Вначале считаем все числа простыми и с каждым проходом вычеркиваем составные. После всех проходов останутся только простые числа.
2 147 483 647 бит ~ 268 435 456 байт ~ 256 МБ. По сравнению с первоначальными затратами в 8Гб теперь мы храним только 256 МБ, что в 32 раза меньше.
И это не самое оптимальное решение, т.к. вычеркивание четных чисел сокращает требование памяти в 2 раза, т.е. четные пропускаем, а нечетные считаем. Вычеркивание первых нескольких простых чисел и кратных им значений существенно уменьшит затраты на память, используя шаблон длиной 2*3*5*7*11 = 2 310 бит = ~2Кбайт, который в пределах 2Кбайт уникален, а потом повторяется. И тогда использование памяти вместо 2 310 бит будет всего 344 бита (всего 344 простых чисел до числа 2310), т.е. сокращение с первоначальных 2 147 483 647 бит до 319 798 431 бит или около 38 Мбайт. Экономия составила 85% от объема в 256 Мбайт, т.е. уменьшение в 6,74 раза или экономия 99,53% от первоначальных 8Гб, т.е. уменьшение в 216 раз!
2310 бит — это всего лишь маска, которая накладывается поверх исходного массива. Т.е. например маска (не по задаче) [1, 0, 1, 1, 1, 0, 1] будет обозначать там, где нули — это рабочие значения, а единицы можно пропускать. Такая маска из 7 значения (2 «прозрачных окна») + массив из 20 значений (по 2 значения на один просмотр маски) дадут нам покрытие в 70 чисел виртуальных чисел, из них 20 чисел нас и будут интересовать, которые и занесены в массив


Задачка на простые числа приведена с целью показать, что с нейронами можно поступать также, когда место расположения нейрона также может хранить некоторую информацию. Проблема в том, что я пока не встречал хорошей проработки того, как с помощью месторасположения хранить данные.

P.S. перечитывая собственную реализацию, понимаю, что можно и статью пилить по простым числам, дополнив теоретическое описание кодом для сравнения производительности. А я всего лишь использовал маски и хранение значений в их местоположении и добился сокращения по памяти в разы. Т.е. даже не пытался использовать весь доступный арсенал с куда более сложной математикой. Например — разделение масок на несколько перекрывающихся, подгружаемые окна просмотра и т.д.
Я считал для max int32 и расчеты внушали оптимизм. Даже неоптимальный план с 8 Гб все равно мог быть создан на жестком диске или даже в оперативной памяти.
Как только посчитал для int64 — энтузиазм пропал.
Дело в том, что понадобится либо 64 Эксабайта для хранения всего массива 64-битных чисел, либо 1 Эксабайт для хранения битового массива выключателей. И как-то серьезно уменьшить требования до хотя бы нескольких сотен гигабайт мне не удалось.
Даже применение математики не дало значительного преимущества. Максимум сократил еще в 8 раз требуемую память из 10^18 и получил 10^17. 0,125 Эксабайт все еще слишком много.

Каюсь, я недооценил масштаб чисел. Спасибо за информативную беседу, даже отрицательный результат — это результат. Заодно увидел, что местами в расчетах пропущены некоторые числа, из-за чего результат отличается от правильного на несколько порядков, как вы и указывали.
Плюсую.

Сжать раз в 10 можно, и иногда до 100 раз, если нужны только id-шники битов активации в разреженной матрице (в зависимости от разреженности). Но вот там намного больше памяти нужно для обеспечения внутренних вычислений, чем для хранения выхода ячеек.
У человека нету режима «зрелости»
У reinforcement learning тоже нету, в любой момент можно не снижать фактор обучения и учиться дальше. Не нейросетями едиными.
Так и нету бага в виде при обучении чему-то новому забывать полностью всю предыдущую жизнь.
Детали забываются, а полностью и нейросеть не забывает.
Буду рад, если найдутся ссылки на новые исследования, где нейронные сети уже могут переобучаться без потери памяти, причем с возможностью постепенного обучения на малых объемам, а не прогоном 100 тыс картинок
Ссылок под рукой нет, но насколько я знаю, типичный подход для работы в области распознавания изображений следующий:
1. Берем сеть, которая хорошо умеет решать какую-то схожую задачу (например, ImageNet).
2. Обучаем ее на наших данных — обычно этих данных сильно меньше, чем ImageNet (например, HBO при реализации приложения NotHotdog использовала всего 3000 изображений хотдогов).
3. Система хорошо работает на нашей задаче. При этом качество на оригинальной задаче (распознавание 20000+ классов изображений) падает, но далеко не всегда оно падает значительно.
Ну а добавить один объект или один батч объектов и сделать итерацию обучения все нейросети умеют by design.
Человек способен всего по нескольким изображениям учиться определять новые предметы
В направлении one shot learning тоже есть прогресс. Например, в статье Santoro A. et al. One-shot learning with memory-augmented neural networks //arXiv preprint arXiv:1605.06065. – 2016 решалась задача распознавания символов ранее неизвестного алфавита. Удалось достичь сверхчеловеческой точности, при этом сеть, которая видела 2 изображения, распознавала лучше, чем человек, видевший 5, а сеть, которая видела 4 — лучше, чем человек, который видел 10.
Вы правы насчет того, что пока что во многих областях one shot learning не показывает сверхчеловеческих результатов, но все же где-то он уже их показывает, и год от года таких областей становится больше. Ну и в случае человека все же не совсем честно считать одно изображение за одно — от глаза идет не одна картинка, а видеопоток, и человек by design видит каждый объект обучающей выборки под разными углами и с разными искажениями.
Человек сам себя обучает и сам даже себе ставит задачи, поэтому он сам может решать новые задачи без специального ручного дообучения извне
Это у машинного обучения не баг, а фича. Сделать систему, которая сама выберет себе задачу, обучится на нее и будет решать (успешно или нет — зависит от задачи) — элементарно: берем нейросеть, добавляем к ней скачивание данных и рандомизатор. Только вот зачем? Обычно все же требуется система, решающая конкретную задачу, а не какую сама захочет.
вы про overfitting? Из чего следует ваше утверждение?
Я не изучал эту тему, но на первый взгляд тут совсем не обязательно модель будет переобучаться. Более того, это зависит от ее внутренней структуры.
Если вы про «забудьте то, чему вас учили в школе, институте, армии, на работе и… учитесь снова» то тоже не очевидно, так как опять же, зависит от внутренней структуры. Это может быть как «маркетинговая» модель, которая по сути состоит из классификатора задачи по входным данным и собственно моделей, которые эти задачи решают. Или же это может быть модель с однородной (относительно предыдущего примера) структурой, реализующая мультизадачность каким-то другим образом.
вы про overfitting?
Судя по дальнейшему обсуждению в той ветке, имелось в виду transfer learning
Предполагаю, что мы как раз не самообучаемые квадрокоптерные чайники с вайфаем.
Если бы там были некоторые подвижки в сторону ИИ, сеть бы на небольшом количестве примеров могла научиться любому действию — хоть игре в тетрис, хоть переводу.
Как мне кажется, это зависит от того, способна эта сеть анализировать собственное состояние так же, как анализирует входные данные, или нет. Вышеописанная сеть от гугла, судя по всему, неспособна.
на самом деле осталось только сделать «области» сопряжения таких аналитических блоков, при чём эти области так же будут подчинятся весовым распределениям для нахождения пути к нужному функциональному блоку и можно уже будет городить более-менее полноценный примитивный «типа мозг», подключая «раздражители\регуляторы весов». т.е. дальше уже как конструктор лего, видится как что то вроде нейропластичности мозга.
Может лет через 20 как поднакопят блоки нейро-сетевых шаблонов и создадут интерфейс для нейронной связи для интеграции с био-нейронами, тогда и начнётся полноценный сдвиг к сингулярности с огромными возможностями, снимающие биологические ограничения. Ещё конечно вопрос организации связей\шин, хранении регуляции весов в плане компактности очень массивных структур. А то может статься, что обычные синапсы и РНК более компактны и эффективны в этом плане, но это так… хмельные ) рассуждения без полноценных фундаментальных знаний в этой области.
Может, через сотку лет как обкатают действующие девайсы и можно уже будет полностью замещать «пробелы» в «реакциях на раздражители» готовыми «обученными» блоками с навыками\знаниями.
На самом деле давно уже было предчувствие, что так оно и будет, т.к. общее принципиальное понимание механизма уже есть, остальное дело времени и развития технологий.
P.S. эх, всегда была мысль… «родиться бы лет хотя бы через 100», а так не факт что моё мясо доживёт до перехода.

Шутка на тему сингулярности:
"тогда и начнётся полноценный сдвиг к сингулярности с огромными возможностями, снимающие биологические ограничения для просмотра еще большего количества порно и котиков".

Автор, ML — очередная «тема» чтобы «заработать доллар» в всевдо-культурном и псевдо-просвещённом капиталистическом обществе, а Big Data — это не технология, а скорее «масштаб задачи». На сегодня это всё.

Угу. DB — это просто база, с ней не возникает сложностей, когда она растет по много гигабайт в день.
Нагрузка — это просто нагрузка. Работа с кодом для 10 rps и 60000 rps — это просто масштаб. Highload — миф.
Лечение порезанной и отрубленной ног тоже не отличается. Это просто глубина пореза.

Слишком много слов про нейронки, когда в подавляющем числе реальных задач они работают плохо.
Это же инструмент. Микроскоп, например, тоже в подавляющем числе реальных задач работает плохо. Ни шуруп завернуть, ни гвоздь забить, ни картошку на сковороде помешать. Так и нейронные сети, в некоторых реальных задачах они значительно упрощают ситуацию и позволяют добиться значительно лучшего результата, чем без них. И есть надежда, что таких реальных решаемых задач будет больше.
Есть надежда, что микроскопом-таки можно будет забивать гвозди?
UFO landed and left these words here
UFO landed and left these words here

"Когда у тебя в руках микроскоп, все проблемы вокруг начинают казаться гвоздями".

>Это же инструмент. Микроскоп, например

какой банальный и заезженый пример. Ну сравните сколько студентов в наше время микроскоп использует, и сколько подались в нейронщики. Нейрономания выела мозг, туда уже никогда не залезит ни статистика ни тервер,… понятно, там же думать надо. а тут бац бац, скрестил ужа с ежом и вроде чета там работает.
В статье упоминаются в основном примеры работы с неструктурированными данными (картинки, тексты и т.п.), а с ними как раз в подавляющем числе реальных задач только нейросети и работают хорошо.

Только проблема в том, что этих неструктурированных данных нужно так много, что в них начинает проявляться статистически значимая структура.

UFO landed and left these words here
Помнится, в журнале «Игромания» много-много лет назад читал про хардварный самообучающийся ML для игры в крестики-нолики на основе спичечных коробков и бусин.
Ничего с тех пор не изменилось, только масштаб.
Описан был в цикле «Берсеркер» Саберхагена Without a Thought, а до него ещё много где. Возможно, у Гарднера читал первый раз.

По-моему, чего-то не хватает.


"Доказательство1" и отсюда следует, что каждой архитектуре нейросети можно поставить в соответствие функционально эквивалентный набор ящиков с бусинами.


"Рассуждение2", и это дает основания предполагать, что набор ящиков с бусинами не может служить для построения искусственного интеллекта общего назначения.


Вот доказательства1 и рассуждения2 не хватает.

Я понял примено так — есть класс задач в которых нужно в большом массиве данных найти то, поиск чего нельзя запрограммировать формальным алгоритмом, причём есть относительно простая процедура проверки что найдённое это то что нужно.
Например, надо нам лицо преступника найти на видео с камер всего города, если найдём, то проверить можно вплоть до снятия отпечатков и анализов ДНК. Или поиск веществ с нужными свойствами, например лекарств.
Вот такой класс задач отлично подходит для использования нейронных сетей, в остальных случаях вопрос открыт.
ИМХО, проблем в матчасти и прикладных задач еще овердофига в этой области. Просто улеглась волна хайпа, которую оседлали псевдостартапы. Далее дело пойдет за талантливыми ml-инженеграми, а стартапы будут формироваться не для распознавания хотдогов, а для чего-нибудь посерьзней.
Основная беда, imho, в том, что программирование нелинейной логики противоречит самой природе программирования. :) Все обучение и работа сетей строится по сути на сравнении чего-то на входе с тем, что они уже видели. Что само по себе тупиковый путь, imho. Ибо всегда есть риск нарваться на что-то, что сеть еще не видела. И ее выводы будут неверными.

Ну и еще момент, касающийся автоматизации вообще, безотносительно именно сетей. Чем больше берет на себя компьютер, тем больше расслабляется человек. И начинает косячить ТАК, как без компьютерной помощи не накосячил бы никогда. :(
Что само по себе тупиковый путь, imho. Ибо всегда есть риск нарваться на что-то, что сеть еще не видела.
Думаете у человека не так? Аборигены, кот. никогда не видели кораблей европейцев никак не воспринимали их, пока с них не спускали лодки с людьми, кот. они уже могли распознать по своим пирогам, и соответственно реагировать. Есть разные виды когнитивной слепоты, можно здесь почитать, весьма занимательно.
UFO landed and left these words here

Про аборигенов, я уверен, это байка.
Если в привычном окружении появляется неведомая долбаная фигня — любой нормальный человек наоборот будет таращиться на неё во все глаза. И любое животное тоже. Это в инстинктах.
И обозначить в привычные понятия, если непонятно истинная природа явления.
Плавает — значит лодка, большая — значит великаны приплыли, или боги. А так, чтобы в упор не видеть — нужно быть совсем деревянным.

этот эффект слепоты проявляется при сосредоточении на отдельной детали

чтобы доказать вашу точку зрения — нужно такое же видео с кораблями — а затем сказать, как именно такое видео могло быть воспроизведено в эпоху открытия Америки?

нетрудно заметить, что обезьяна и другие фигуры одинаковы по размерам, а сосредоточение на процессе перекидывания мяча делает все остальное фоном.

На чем могли сосредоточиться индейцы, чтобы не замечать корабли?
Что это были за фигуры, которые могли замаскировать корабли европейцев?
И если не сосредотачиваться на мяче, то проблем с обезьяной никаких не возникает даже при первом просмотре. А чтоб сосредоточиться — это надо получить прям вводную какую-то жесткую — типа обязан рассказать кто кому мяч перекидывал.
В противном случае смотришь на эту обезьяну и не понимаешь, какого фига она там делает.
нетрудно заметить, что обезьяна и другие фигуры одинаковы по размерам, а сосредоточение на процессе перекидывания мяча делает все остальное фоном.

Да. Если неожиданный объект сильно выделяется, то его замечает где-то 70% людей. https://journals.sagepub.com/doi/pdf/10.1111/1467-9280.00303

Если в привычном окружении появляется неведомая долбаная фигня — любой нормальный человек наоборот будет таращиться на неё во все глаза. И любое животное тоже. Это в инстинктах.
Вы правы лишь отчасти. То что вы описываете называется ориентировочным рефлексом, и он возникает на изменения в обстановке, на новое, особенно, если она меняется быстро. И так с ними и было бы, если корабль материализовался среди бухты неожиданно, из неоткуда) Но те корабли перемещались медленно, медленно появлялись на горизонте, медленно приближались. Фиг знает, может это сорванное ураганом большое дерево плывет, или еще что. Угрозы не видно, изменение слабое, и рефлекс особенно не возбухает. Этот прием используют хищники, когда медленно подкрадываются к добыче, они не только маскируются, но и то что их выдает изменяется слабо, поэтому рефлекс также не срабатывает. Но с аборигенами другое дело, они в принципе не могли классифицировать этот объект, и соответственно как к нему относится, т.к. в их семантической сети просто отсутствовал такой узел, связывающий смыслы. Отсюда и возникала невидимость.

Информация о "невидимости", надо полагать, из судового журнала экспедиции Кука?


These people seemed to be totally engaged in what they were about: the ship passed within a quarter of a mile of them and yet they scarce lifted their eyes from their employment; [...] She often looked at the ship but expressed neither surprise nor concern. Soon after this she lighted a fire, and the four canoes came in from fishing; [...] to all appearances totally unmoved at us, though we were within a little more than half a mile of them.

"Эти люди были полностью поглощены тем, чем они занимались: корабль прошёл в четверти мили от них, но они почти не смотрели в нашу сторону; [...] Она часто смотрела на корабль, но не выразила ни удивления, ни беспокойства. Вскоре после этого она разожгла огонь и с рыбалки вернулись четыре каноэ. [...] [Все эти люди] не выказывали никаких эмоций по отношению к нам, хотя мы находились немногим дальше полумили от них."


Взято отсюда: https://www.reddit.com/r/AskHistorians/comments/3lh0kz/is_it_true_that_when_the_indians_saw_ships_for/


Так что видели, но, похоже, не знали как относиться. Коренные жители Австралии, вообще, довольно своеобразны. В Америке ничего похожего не было.

UFO landed and left these words here
они в принципе не могли классифицировать этот объект, и соответственно как к нему относится, т.к. в их семантической сети просто отсутствовал такой узел, связывающий смыслы.

Не смогли классифицировать большую лодку?
Хорошо, пусть корабль не похож на лодку, пусть он вообще не похож ни на что привычное.
Когда вы играете первый раз в игру, и встречаете первый раз незнакомого монстра, вы тут же его как то для себя обозначаете, правда? Например «Красная хрень с ушами» или «чупакабра с огнеметом». Создаете образ — пусть очень неполный, но он есть как отдельный файл, обозначеный названием и внешними атрибутами. Потом уже, по ходу изучения, это файл пополняется характеристиками.
Наш мозг параноидален по отношению к неизвестному. И игнорировать НДФ в принципе не может, скорее наоборот.
Я не психолог, но в «невидимые корабли» не верю абсолютно. Тем более, что легенда основана на единственном случае.
Когда вы играете первый раз в игру, и встречаете первый раз незнакомого монстра, вы тут же его как то для себя обозначаете, правда?
Что такое исторический подход?
Вы исходите из здравого смысла, и даете на первый взгляд очевидный ответ. Он энергетически выгодный, так поступает подавляющее большинство людей. И это нормально! Потому как проанализировать ситуацию требует намного большего затрата энергии и времени. Но самый простой ответ, не самый точный, не смотря на бритву Оккама) Когда вы обращаетесь к прошлому очень важно соблюдать принцип историзма. Что это значит? Одно из двух, либо вы анализируете прошлые события исходя из современных представлений, но отдаете себе отчет в этом, либо забываете про современный уровень, и пытаетесь исходить из представлений только той эпохи. Это трудно, и не всегда достижимо из-за отсутствия информации. Если вы смешиваете эти два подхода, т.е. распространяете современные представление на прошлое, то получается то, что в науке называется альтернативщиной. Яркий пример всевозможные альтернативные трактовки истории исходя из современных представлений, типа того, что пирамиды нельзя построить с помощью примитивных технологий, и поэтому без инопланетян, богов и тд тут не обошлось. Так же историзм предполагает рассмотрение событий и явлений в развитии, условно, от более простого к более сложному.
Что это дает для нашего случая?
1. Семантическая сеть смыслов аборигенов намного примитивнее нашей. Скажем так, она в зачаточном состоянии. В ней практически полностью отсутствуют представления о технологиях, технике. Возможно они и плавательных средств не видели в некоторых случаях. Поэтому не могли даже подобрать близкие смыслы, как это делаете вы в игре. Не исключено, что они воспринимали корабли, как некоторые естественные объекты, хотя и замысловатой формы.
2. Попробуйте перенести эту ситуацию на развитие интеллекта и, вообще, сознания от диких предков до современного состояния. Как аналог предков возьмем поведение обезьян. Как думаете, что они видят глядя на корабли, и др. артефакты цивилизации? Скорее всего — опасно это, или нет, и можно это съесть, или нет. Думаю не стоит объяснять почему это происходит исходя из их сети семантических смыслов. То есть они ничего не видят, и аборигены только некоторый промежуточный случай в этой цепи.
3. Теперь посмотрим на нашу ситуацию с точки зрения сверхразвитой цивилизации. Ну я не буду педалировать на «Пикник на обочине» Стругацгих) Хотя вполне может быть и такое. Предположим они освоили технологию Темной материи, и ее трансформацию в обычную. И вы конечно слышали про НЛО? С точки зрения науки многое связанное с НЛО объясняется естественными явлениями. Сам одно время интересовался этим. Вполне можно многое объяснить исходя из нашей сети семантических смыслов. Вполне возможно, прям как у тех аборигенов)
В ней практически полностью отсутствуют представления о технологиях, технике. Возможно они и плавательных средств не видели в некоторых случаях.

"с рыбалки вернулись четыре каноэ"


Не исключено, что они воспринимали корабли, как некоторые естественные объекты, хотя и замысловатой формы.

Не исключено, но маловероятно. Более вероятные причины:
— У них другие дела есть, чем пялиться на непонятные лодки в километре от них, еду надо добыть и приготовить.
— Люди устали от тяжелой жизни, и им совсем неитересно кто там приплыл, пусть вождь разбирается.
— Наверное это приплыли из соседнего племени, как на прошлой неделе, смотри-ка какие лодки придумали, но все равно это дело вождя с ними разговаривать.


Или вот представьте обычную воинскую часть. Солдаты работают в соответствии с приказаниями на текущий день, кто в ангаре машины обслуживает, кто траву косит, кто ветки убирает. И тут прилетает дирижабль, или пусть даже НЛО. Вы думаете, все солдаты бросят работу и побегут смотреть?

И тут прилетает дирижабль, или пусть даже НЛО. Вы думаете, все солдаты бросят работу и побегут смотреть?

Может и не все, но большая часть точно. И не только из-за дирижабля или НЛО, а из-за почти любого повода отвлечься от тупой и почти бессмысленной деятельности.*
*Основано на личном опыте службы в СА.

А кто им разрешил покидать рабочее место? Офицер сказал "Продолжаем работу, я сам проверю", и всё. Можно ли из этого сделать вывод, что у них и вообще у всех людей слабая семантическая сеть смыслов?

Средний IQ у коренных жителей Австралии около 60. С таким уровнем IQ обычно связаны трудности с адаптацией к новым условиям и обстоятельствам. Возможно им было проще не обращать внимание.

А где вы почерпнули эту информацию про 60? И кстати одна из нападок на IQ тесты говорит о том, что тест совсем не оценивает такие аспекты человеческого интеллекта, как креативность (что напрямую обеспечивает приспособляемость). Вот тут много написано en.wikipedia.org/wiki/Intelligence_quotient#Criticism_and_views
UFO landed and left these words here
Проблема любых тестов в том, что они сильно перекошены в сторону оценки умения проходить именно эти тесты.
Насколько я помню, IQ — это тест на соответствие американской системе образования, т.е. человек, получивший высокий результат этого теста, будет успешен в американской школе/университете. Не намного более того.

Способность решать задачи независимо от того насколько они куда-то перекошены, вроде бы неплохо описывает интеллект общего назначения.

С одной стороны — да, и поэтому результат теста IQ коррелирует с… Вот хороший вопрос, с чем: с интеллектом (в чём измеряется? Как измерить?), с приспособленностью, с чем-то ещё?
С другой — IQ — тест на время, и объективно человек, который привык решать тесты, решит его на бо́льший балл, чем не привыкший к тестам.

И даже различие в два с лишним раза (60 против 120+) будет однозначным показателем неприспособленности человека прямо сейчас, а не гарантированной низкой оценкой его интеллекта (неспособности научиться, в том числе, пройти тест на заметно более высокий балл).
Видимо альтернативщики минусуют комент)
По когнитивной слепоте проводились эксперименты на детях. Исходя из предположения, что мышление детей приближенно напоминает мышление людей на заре цивилизации. Результаты подтверждают ее существование. Вот здесь упоминание, к сожалению не нашел ссылки на оригинал. Есть еще пример — одичавшие дети, они не могут выучить язык, адекватно распознавать культурные артефакты и использовать их. Конечно процессы распознавания, внимания и навыки реагирования тесто связаны между собой. Но все же основа распознавание, и если по какой-либо причине артефакт не распознается, то страдает вся цепочка, или работает не эффективно. Есть прямые исследования на животных и наблюдения за людьми с отклонениями и травмами, у кот. возникала когнитивная слепота разных видов, когда нарушались соотв. структуры мозга.
Понятно также, что чем выше уровень цивилизации, тем шире семантическая сеть смыслов у составляющих ее индивидов, и тем больше вероятность, что они могут найти приближенный смысл ранее неизвестного им артефакта, и соответственно реагировать. В этом, естественно, и состоит пока преимущество интеллекта человека над имеющимися нейросетевыми решениями.
Детям в возрасте до девяти лет показывали трехмерные изображения хорошо знакомых им предметов, например игрушек, а также предметов, которые они никогда не видели, например изображение домны. Большинство детей, участвовавших в эксперименте, просто не видели незнакомые предметы и не могли их описать.

Из этого описания непонятно, что происходило, чтобы сделать именно такой вывод. Может дети не могли описать потому что сложные мысли еще не умеют формулировать. "Трехмерные изображения" видимо подразумевают 2 картинки, в которых непонятно как воспринимать глубину. Почему именно изображения, а не сами предметы? "Не распознается" и "не обращает внимание" это тоже разные вещи, хотя в каких-то ситуациях типа наблюдения издалека они схожи. Если бы корабль выбросило на берег штормом, аборигены бы ходили по берегу и стукались лбами об корабль, или бы все-таки обходили препятствие? В общем, какой-то слабый пруф, не стоит на него полагаться.

Может дети не могли описать потому что сложные мысли еще не умеют формулировать.
Чтобы понять, что на картинке изображена домна нужно до этого показать эти изображения, или кино, или в натуре, и объяснить, что это такое. Тогда у ребенка этот образ, и связанная с ним семантика, впишется в общую семантическую сеть смыслов. Он уже будет осмысленно воспринимать этот образ, и соответственно связывать его с другими, моделировать в воображении, и тд. Если этого нет, то он просто проигнорирует это изображение, не выдав никакой осмысленной информации. Учитывая, что у ребенка эта сеть еще не настолько развита, и он сможет сделать некоторые предположения, как это могут сделать взрослые. Т.е., если не было обучения, то образ и не будет распознаваться, он может например быть принят за естественный объект. Вероятно возникнут случайные ассоциации. То же происходило с аборигенами. Вы видимо считает, что они ничего вообще не видят) Свет-то идет. Если вообще не видят, то это другие виды слепоты. Их довольно много, ссылку приводил ранее с того же ресурса. Важно понять, что со взрослением такая слепота исчезает, т.к. в любом случае при предъявлении взрослому человеку картинки или реального объекта, кот. он раньше никогда не видел, он сможет его как-то идентифицировать, хотя-бы приблизительно, а не проигнорировать полностью.
UFO landed and left these words here
Да-да, а что получается, если человеку показывать пятна роршаха!
А по сути вы именно на это ссылаетесь, используя как доказательство слепоты туземцев детей, которые не смогли на картинке пятен роршаха увидеть домну.
А по сути вы именно на это ссылаетесь, используя как доказательство слепоты туземцев детей, которые не смогли на картинке пятен роршаха увидеть домну.
Если они не знают про домну, они никак не смогут в любых пятнах ее увидеть. Что-нибудь еще да, писал уже про любые ассоциации. Очевидно, чем старше ребенок, тем больше ассоциаций, и более точных.
Ещё раз, по вашему, если человек увидя пятно роршаха на картинке не смог ничего внятного про него сказать — это доказывает слепоту туземцев относительно кораблей, но отсутствие оной относительно самолетов США?
но отсутствие оной относительно самолетов США?
Вы о каких самолетах? Которым потом поклонялись? Кто-то упоминал этот случай. Естественно, первая реакция на неизвестное будет мистическая, для людей находящихся на такой стадии развития. Причем у шаманов в первую очередь, как наиболее продвинутых представителей таких сообществ. Рядовые соплеменники возможно на эти самолеты вообще не обратили внимание в начале. Такое было при посещении Магелланом Огненной земли, когда на их корабли первым обратил внимание шаман.

Рядовые соплеменники возможно на эти самолеты вообще не обратили внимание в начале
А возможно вы всё выдумываете ради того, чтоб отстоять свою точку зрения.
Ещё раз: в случае с самолетами была неверная интерпретация, но не слепота. Нет ни повода, ни фактов считать, что заявленная вами слепота — существует.
возможно вы всё выдумываете
Нет, это есть на самом деле, психологи-когнитивисты исследуют эти явления. Приводил пример исследования на детях, как модельный случай.
Ещё раз: в случае с самолетами была неверная интерпретация, но не слепота.
С их точки зрения верная) Они ни сном ни духом про самолеты. Вы видимо альт, и не придерживаетесь принципа историзма в рассмотрении таких вопросах.
Приводил пример исследования на детях, как модельный случай.
Модельный случай, что человек не знает как описать пятна Роршарха на картинке? Гениально.
А нарисовать они его не просили, ну чтоб «слепоту» доказать.
Они ни сном ни духом про самолеты.
И что, от того, что они не знают название и характеристики объекта — то они его не замечают?
Странно, объекты внизу из хвороста и соломы явно указывают — что и замечают, и могут какое-то подобие изобразить.
что человек не знает как описать пятна Роршарха на картинке?
Это были не пятна, а картинки реальных объектов, судя по описанию здесь (ссылки на ориг. работу нет, мой поиск так же не дал результатов). Но результаты, на мой взгляд, вполне предсказуемые. Только не нужно интерпретировать эту слепоту у детей как, что они ничего не видят. Слепота не зрительная, а когнитивная, т.е. по определению связана с процессом распознания и узнавания.
И что, от того, что они не знают название и характеристики объекта — то они его не замечают?
Уже ответил, что замечают. Посмотрите, мой исходный комент в ветке, там написано не воспринимают, а не не видят. Это разные понятия. Второе описывает процесс включая не только распознавание зрительного образа, но и активацию его ассоциативных и семантических связей, т.е. процесс который и является конечной точкой осознания объекта в целом, и контекста, и мотивации, и внимания, и возможных действий, и тд, все в коиплексе. Для человека эта разница существенна. Если распознавание образов имеется у животных, то втрое больше характерно только для человека, как существа разумного и социального, и возникает в результате обучения с использованием языковой коммуникации и культурной традиции. Моментов кот. нет при обучении у животных. В этом смысле, если такого обучения не было, то возникает когнитивная ошибка. Назовите ее как хотите. Закрепилась когнитивная слепота, с уточнением «белая», т.к. есть другие разновидности таких ошибок, напр, связанных с вниманием. Это название по сути верно. Так же, как возникает зрительная слепота, если имеются нарушения в зрительном анализаторе, так же возникает когнитивная слепота, если имеются нарушения в когнитивной системе. Что спасает при таких нарушения, так это некоторая компенсация связанная с ассоциативными связями. В случае с кораблями компенсация была минимальной, никаких особых ассоциаций они не вызвали, в случае с самолетами — связанная с культом.
Это были не пятна, а картинки реальных объектов
То есть вы утверждаете, что реальных объектов в виде пятен Роршарха быть не может?
И кто после этого когнитивную слепоту демонстрирует?
Слепота не зрительная, а когнитивная, т.е. по определению связана с процессом распознания.
Распознавания чего?
Что может распознать человек на картинке с вещью, аналогов которой он никогда не видел.
И как это доказывает наличие такой слепоты в РЕАЛЬНОМ мире, а не при анализе двухмерной картинки?
Ещё раз, детей просили повторить рисунок? Если да и они нарисовали в меру умений что-то схожее, то никакой когнитивной слепоты нет.
В случае с кораблями компенсация была минимальной, никаких особых ассоциаций они не вызвали, в случае с самолетами связанная с культом.
То есть вы утверждаете, что во втором случае папуасы увидели самолеты потому что у них до этого был культ самолетов, а первые не видели кораблей, потому что такого культа не было?
Или таки культ появился потому, что они прекрасно видели самолет и интерпретировали его как-то иначе, чем другие, которые увидели корабль и не придали ему особого значения?
Но всё это доказывается исследованием детей картинками на плоскости, изображающие неизвестные им предметы, то бишь читай пятна Роршаха — неизвестная мозну фигура, в которой оный мозг старательно пытается увидеть сходство с чем либо, ему уже известным?
Мда…
PS. И да, минус в карму никак не служит доказательством ваших слов.
То есть вы утверждаете, что реальных объектов в виде пятен Роршарха быть не может?
Говорим о конкретной работе, а не пятнах Роршаха.
Ещё раз, детей просили повторить рисунок? Если да и они нарисовали в меру умений что-то схожее, то никакой когнитивной слепоты нет.
Вы понимаете о чем речь идет? Детей просили описать картинки. Конечно они могли их запомнить, и как-то нарисовать, в зависимости от уровня развития зрительной памяти. Но понимание того, что на ней изображено у них от этого не улучшится. Для этого нужно провести обучение. Рассказать о предмете, показать больше материалов, еще лучше в натуре продемонстрировать, как этим пользоваться, как связан с другими объектами, и тд., зависит от предмета изучения и подготовки человека. В этом случае он впишется в имеющуюся семантическую сеть, и уже будет иметь смысловую нагрузку и вызывать адекватные ассоциации, эмоции, реакции, и тд.
То есть вы утверждаете, что во втором случае папуасы увидели самолеты потому что у них до этого был культ самолетов, а первые не видели кораблей, потому что такого культа не было?
Почему самолета? Может у них был летающий бог) какая-нибудь важная птица. Про культ корабля, как вам сказать… ладно промолчу. Имеется в виду, что неизвестное, в первую очередь, вызывало у них мистические ассоциации, а соотв. культ всегда можно придумать.
Мда…
Вот именно, мда… по существу ответить то и нечего.
PS. И да, минус в карму никак не служит доказательством ваших слов.
Я тут не причем.
Я тут не причем.
Хм, тогда это я, видимо, нашего коммуниста достал в его теме, извиняюсь
Говорим о конкретной работе, а не пятнах Роршаха.
Потому что это принцип работы с патнами Роршаха. Показывают фигню и анализируют ассоциации.
Разница от того, показали ли детям пятно или картинку неизвестного предмета — ничего не изменяет по сути, особенно с учетом того, что
Но понимание того, что на ней изображено у них от этого не улучшится.
Какое отношение это имеет к «когнитивной слепоте»? Она не про понимание изображения.
Для этого нужно провести обучение. Рассказать о предмете, показать больше материалов, еще лучше в натуре продемонстрировать, как этим пользоваться, как связан с другими объектами, и тд., зависит от предмета изучения и подготовки человека.
Какое ЭТО имеет отношение к когнитивной слепоте? По-моему сейчас когнитивную слепоту здесь демонстрируете вы… Вам пишут-пишут, а вы не видите что вам пишут.
В этом случае он впишется в имеющуюся семантическую сеть, и уже будет иметь смысловую нагрузку и вызывать адекватные ассоциации, эмоции, реакции, и тд.
То есть если обучать человека видеть обезьяну во время баскетбола, то… А, нет, это же не про это
— смотрящие не распознают визуальный объект или событие;
— объект или событие должны полностью находиться в поле зрения;
— смотрящие должны суметь распознать объект, если это является их целью;
— событие должно произойти неожиданно, а неспособность распознать объект должна быть связана с тем, что смотрящие сконцентрированы на других элементах происходящего в их поле зрения.
Какое отношение к этому имеет демонстрация картинки неизвестного предмета детям?
Потому что это принцип работы с патнами Роршаха.
Оставьте уже в покое Роршаха) Это модельная, искусственная ситуация. По ней можно изучать когнитивные процессы в некоторых проявлениях, но реальность куда богаче. В восприятии окружающей среды могут возникать похожие иллюзии, связанные с парейдолией, напр., в облаках что-нибудь увидеть. Но в норме индивид всегда отдает себе отчет в происходящем. Хотя отдельные экзольтированные личности могут делать из таких иллюзий далеко идущие выводы. Знамения усмотреть, и тд., но они обычно могут во всем их усмотреть. Не говорю уже о псих. отклонениях.
Какое ЭТО имеет отношение к когнитивной слепоте?
Это имеет отношение к ее устранению, хотя-бы частичному) Без обучения в школе, и в вузе, были бы более подверженны ее действию в жизни, включая быть более склонными к восприятию тех же иллюзий парейдолии.
По-моему сейчас когнитивную слепоту здесь демонстрируете вы
Без проблем, все мы ее демонстрируем постоянно, и вы, и все остальное человечество, причем перманентно, вне зависимости от того признаем это, или нет. Когда в прошлом люди смотрели на Солнце и думали, что оно вращается вокруг места их проживания, то демонстрировали когнитивную слепоту, пока ее не устранило понимание связанное с устройством Солнечной системы. Утверждение, что люди не знали этого устройства, никак не влияет на то, что люди наблюдали за движением Солнца, слепо доверяя своим ощущениям и имеющимся знаниям. То же происходит и сейчас, когда мы смотрим в телескопы на звезды и галактики, наблюдаем расширение Вселенной, и испытываем слепоту связанную с ее истинным устройством, не зная, как объяснить непонятные феномены ТЕ и ТМ. На это не влияет факт понимания того, что мы не знаем, но можем узнать в будущем. Влияет только факт установления этого знания. Так вероятно будет всегда, пока будем оставаться такими, какими нас создала эволюция. И это было верным по отношению к туземцам, кот. были в полном неведении о существовании европейцев с их кораблями.
То есть если обучать человека видеть обезьяну во время баскетбола, то…
Это разные, но связанные явления, т.к. относятся к разным функциям когнитивной системы. Первая, к нашему пониманию мира, его моделированию, второе к вниманию, и соответственно перцепции. Хотя можно слепоту невнимания рассматривать и в более общем контексте, как разновидность когнитивной слепоты.
— смотрящие не распознают визуальный объект или событие; ...
Лучше исходный текст смотреть, т.к. в переводе неточности. Не заметить, а не «не распознать». Аборигены могли заметить корабли, но не распознать, для этого нужны знания, кот. у них на тот момент не было.
— смотрящие должны суметь распознать объект, если это является их целью;
Точнее — наблюдатели должны легко идентифицировать объект, если они осознанно воспринимают его. С аборигенами этого как раз не могло произойти, они не могли идентифицировать корабли.
— событие должно произойти неожиданно..
Очевидно, в случае с аборигенами, корабль появился постепенно, а не неожиданно. Далее в тексте:
It is the unexpected nature of said stimulus that differentiates inattentional blindness from failures of awareness such as attentional failures..
То есть, если природа стимула является неожиданной, то это относится к слепоте невнимания, чем отличает ее от других типов потери внимания. Это и было в случае с аборигенами, в дополнении к когнитивной слепотой, связанной с непониманием. Обе разновидности слепоты способствовали возникновению описываемой ситуации.
Какое отношение к этому имеет демонстрация картинки неизвестного предмета детям?
Давайте проверим. Под спойлером картинка, попробуйте описать ее наиболее точно и кратко. Надеюсь на вашу добросовестность, что не обратитесь к любым другим источникам информации, а будете полагаться только на имеющихся у вас знания, как в эксперименте. Иначе это не будет иметь смысла.
Заголовок спойлера

Удачи!
Оставьте уже в покое Роршаха)
Сказал человек, который путает показ картинок и когнитивную слепоту? Ну да…
Когда в прошлом люди смотрели на Солнце и думали, что оно вращается вокруг места их проживания, то демонстрировали когнитивную слепоту, пока ее не устранило понимание связанное с устройством Солнечной системы.
Вы явно какие-то свои термины выдумали и теперь их обсуждаете, путая несколько разных явлений в одно.
Точнее — наблюдатели должны легко идентифицировать объект, если они осознанно воспринимают его.
Нет, это вы выдумали. Нет там ничего про идентификацию. Пример с обезьяной вообще не о том. Про что вам уже какое сообщение какой пользователь пишет.
Лучше исходный текст смотреть
Такие результаты, как невнимательная слепота – неспособность заметить полностью видимый, но неожиданный объект, потому что внимание было занято другой задачей, событием или объектом – изменили взгляды на то, как мозг хранит и интегрирует визуальную информацию, и привели к дальнейшему исследованию мозга и, что важно, когнитивных процессов.
Вы вообще читаете то, на что ссылаетесь?
Это и было в случае с аборигенами, в дополнении к когнитивной слепотой, связанной с непониманием.
Бездоказательное утверждение, которые вы доказываете примерами другого явления (читайте пятнами роршараха детям)
Под спойлером картинка, попробуйте описать ее наиболее точно и кратко.
Пятна роршарха
Девушка с хвостом, с сережками, в белой маечке, к ней подсоединены какие-то датчики, которые, возможно, подключены к прибору в правом верхнем углу картинки, перед ней монитор с какой-то пиксельной картинкой (солнышко с лицом, домик, зверёк с шариками, дерево типа яблоня, с которой кажется яблоки падают прямо в корзины под деревом, какое-то пятно типа цветочка по середине дерева, шкала справа в зеленой зоне), клавиатура, правее их цветок, над которым собственно прибор с каким-то механизмом крепления и черной ручкой.
Предположительно проводится исследование или какие-то измерения показателей давления, пульса, ЭКГ в зависимости от показываемых картинок или происходящего на экране. А может это она в ферму вконактике играет
Проблема в том, что вы опять пытаетесь доказать не то, что утверждаете, а утверждаете не то, что пишут другие люди
Сказал человек, который путает показ картинок и когнитивную слепоту?
Это у вас непонимание, связанное с поверхностным знакомством с темой. Когнитивная слепота аналог перцептивной по смыслу и последствиям, хотя обе системы могут сложным образом взаимодействовать в конкретных случаях, и испытывать влияние других систем мозга, эмоциональной, мотивационно-оценочной, и др. Посмотрите работы Кувалдиной, кот. профессионально занимается этой темой, связанной со СН, и дискуссии вокруг нее, напр., эту публикацию о роли сознания. Обратите внимание, что она ссылается на множество зарубежных источников, так, что это не ее выдумки.
Вы явно какие-то свои термины выдумали и теперь их обсуждаете
Какие?
Вы вообще читаете то, на что ссылаетесь?
Почитайте исследования, а не только вики, хотя бы заключение в конце этой статьи. В экспериментах с учетом фиксации направления взгляда установлено, что испытуемые могут фиксировать этот стимул, но игнорируют его. Почему? Потому что в экспериментах ставится другая задача. Поэтому происходит подсознательное игнорирование этой информации. Даже, если испытуемые знали о неожиданных стимулах заранее, некоторые все равно не видели их.

Как с тестом Роршаха, и вообще любыми зрительными иллюзиями, коих черт пруди, в этих экспериментах создаются специальные условия, эксплуатирующие ограничения перцептивной и когнитивной систем человека, связанные с эволюционной целесообразностью. В реальности все намного сложнее, и соотв. множество дискуссий на эту тему.

Заголовок спойлера
Вы правильно описали картинку, идентифицировали все объекты на ней, тем самым выполнили задачу. Но полностью — нет. Наиболее точное и короткое описание: испытуемая занимается миографическим релаксационным тренингом с использованием игрового биоуправления. См. инфу в сети, если интересно. Вы не увидели, что она не играет, руки не на клавиатуре или мыши. Это было бы понятно зная, что изображено на картинке. Анимация управляется с помощью миограммы. Также не проводится исследование в прямом смысле этого слова, хотя сигнал записывается и анализируется. Успех тренинга определяется наполнением ведер яблоками. Используя эту информацию по цепи обратной связи испытуемая может корректировать свое состояние, чтобы добиться лучшего результата. Чем сильнее мышечная релаксация (и ментальная), тем лучше результат по сбору яблок:) Результат можно сравнивать от тренинга к тренингу, наблюдая за прогрессом в ходе курса обучения. Это такая простая инструментальная реплика с восточных методик релаксации и медитации. Есть более сложные методики.
Конечно, все эти детали понятны специалисту, и любому, самому информированному человеку, можно показать картинки, или попасть в ситуации, о которых он мало, что может знать, или вообще ничего не знать. Но в этом и состоит эффект «белой» слепоты. Это было с детьми, кот. не видели в изображении домны что-либо осмысленное, аборигены в кораблях, и соотв. не реагировали на них. Вы не увидели упражнение на релаксацию. Естественно, эта слепота устраняется обучением, путем передачи соотв. информации.
Но полностью — нет.
И причем здесь когнитивная слепота? Ах да, не причем, вы путаете кучу терминов, подменяете понятия и пытаетесь за одно выдать другое.
Я описал, что вижу, плюс указал возможные интерпретации, но вы гениально подменяете, что по статичной картинке я должен был УГАДАТЬ, что происходит в динамике. Гениально. То бишь, из-за нехватки информации в статичной картинке мозг не может сделать верных выводов, а значит вот она КОГНИТИВНАЯ СЛЕОПОТА!!!
Вы не увидели упражнение на релаксацию.
Потому что на КАРТИНКЕ ЕГО НЕТ!
Ещё раз, вы раз за разом подменяете понятия и выдаете незнание, за игнорированием мозгом внезапных событий, если он увлечен другим. И этим аргументируете выдуманное путешественниками невидимость для туземцев их кораблей. Выдуманное — потому что люди в путешествиях любят додумывать свою интерпретацию происходящего. Как раз из-за нехватки данных. Но вас это не колышит, вы смело смешиваете понятия, объединяете разные явления и утверждаете фигню.

За сим откланююсь, ибо тяжело общаться с человеком, который выдает отсутствие информации за то, что мозг игнорирует какие-то данные.
я должен был УГАДАТЬ, что происходит в динамике
Если вы не знали, что представляет из себя эта процедура, то все равно большего не смогли бы сказать. Этого нельзя УГАДАТЬ! Так же как и дети, покажи им домну в живую. Важно именно понимание. А знающий поймет и по картинке.
Ещё раз, вы раз за разом подменяете понятия и выдаете незнание, за игнорированием мозгом внезапных событий, если он увлечен другим.
Ничего не подменяю. В случае с домной и детьми, хоть на картинке, хоть в живую, нет никаких неожиданностей — исключительно незнание, и соотв. когнитивная слепота, как и вашем случае. Сл. невнимания другой феномен — перцептивный, хотя эти уровни связаны. Тоже относится к аборигенам, вряд ли там играл роль фактор неожиданности.

Вот еще пример с аборигенами привел Аллахвердов, известный психолог, автор одной из теорий сознания — психологики. Если лень смотреть все, с 9.35

Если вы не знали, что представляет из себя эта процедура, то все равно большего не смогли бы сказать. Этого нельзя УГАДАТЬ!
По картинке описать динамику невозможно. Всё прочее ваши выдумки и натягивание совы на глобус, ибо вы ошибаться не можете, это все остальные дебилы. Даже если по вашим ссылкам не видят ничего из того, что утверждаете вы.
исключительно незнание, и соотв. когнитивная слепота, как и вашем случае.
Извините, но вы несёте чушь и продолжаете натягивать сову на глобус, когда незнание чего-либо приравниваете к невозможности некоторых людей увидеть обезьяну на видео в неожиданном месте.
За сим уж точно сюда возвращаться не буду, ибо с вами невозможно разговаривать с позиции логики, а с верующими в теории разговаривать невозможно тем более.
пример с аборигенами привел Аллахвердов, известный психолог, автор одной из теорий сознания — психологики
Попытка аппелирования к авторитетам. С доктором я бы пообщался, он хотя бы в логику должен уметь и не будет смешивать разные понятия в одну кучу, как вы выше.
ибо с вами невозможно разговаривать с позиции логики, а с верующими в теории разговаривать невозможно тем более
Дык, это вы зачем-то Роршаха приплели, а затем вслед за michael_vostrikov сл. невнимания, условия для возникновения кот. в приведенных примерах не возникало. У меня противоречий нет, во всех коментах говорил только о когнитивной слепоте.
и не будет смешивать разные понятия в одну кучу, как вы выше.
Еще раз — смешиваете вы, почитайте переписку.
Не знать названия домны при демонстрации вам рисунка — это не то же самое, что не видеть обезьяну.
Не знать, что происходит на картинке, которую показали вы мне — не то же самое, что игнорирование мозгом обезьяны в баскетболе.
Если я не знаю, что на картинке конкретная процедура (а я её описал правильно настолько, насколько позволяет статичная картинка, обезьяну на ней вы мне показать не смогли) — не означает, что мой мозг откинул какую-то информацию и проигнорировал её.
Вы одно доказываете другим, другое третьим и всё это никак между собой не связано. Так что смешиваете здесь только вы не понимая о чем ведёте сами речь
PS. и смысл мне был опять отвечать, когда вам об этом твердит куча людей, но вы абсолютно уверены, что всё перечисленное вами — один и тот же процесс… Вокруг идиоты, а вы — мушкетёр, ага.

Так по вашим же ссылкам написано, что речь о том, что испытуемые не замечали объекты. Вообще не замечали, как предмет обладающий формой и присутствующий в некоторой точке пространства. Ни про какое незнание назначения предмета речь не идет, описанный там эффект проявляется независимо от того, знает человек назначение предмета или нет.

Вообще не замечали, как предмет обладающий формой и присутствующий в некоторой точке пространства.
Нет конечно. По этой ссылке есть книга Гусева «Ощущение и восприятие», посмотрите гл. 10.7. Культурно-исторические детерминанты восприятия. Восприятие сильно зависит от знаний, а знания это одна из основных составляющий культуры вообще. Для примитивных культур это наиболее выраженно. Но и для более развитых тоже актуально. Пример известные эксперименты Бэгби (Bagby, 1957), как восприятие зависит от полученного ранее опыта и знаний, стр. 153 в конце.

Наткнулся на такой интересный вариант когнитивной слепоты — слепота ума. Вообще все это вполне понятно с информационной точки зрения, если рассматривать адекватность информационных моделей, кот. строит мозг для разных случаев. Или их отсутствие, как в случае с аборигенами, у кот. отсутствовала информационная модель парусных судов.
Так по вашим же ссылкам написано, что речь о том, что испытуемые не замечали объекты. Вообще не замечали
Нет конечно. По этой ссылке

Это уже другая ссылка, не из тех, которые вы приводили в предыдущем сообщении и про которые я писал. Какое отношение она имеет к процитированному вами тексту? Да, там написано то что вы написали далее в этом комментарии, но там нет никаких подтверждений того, о чем вы писали ранее. И в примерах там люди замечают объекты, которые им показывают.

В случае с аборигенами, у кот. отсутствовала информационная модель парусных судов, они их видели. Как объекты, присутствующие в море. Какой бы то ни было слепоты там нет ни на каком уровне, описанные факты не соответствуют определениям терминов, которыми вы их называете.
В случае с аборигенами, у кот. отсутствовала информационная модель парусных судов, они их видели.
Где именно я утверждал, что визуально они не видели их? Никто не утверждает, что ничего не видели, типа пустой горизонт, и вдруг появились лодки с англичанами ниоткуда, тогда они сказали ах! Они их не видели в том же смысле, что и в ссылках. В исходном коменте ветки написал «не воспринимали их» это не тождественно «визуально не видели». Не видели их именно в когнитивном смысле, а не чисто визуальном. Распознавалка на визуальном уровне работала, но распознать на более высоком семантическом уровне не могли, т.к. модели парусников и всего, что с ними связано, у них еще не было.
Вы также зачем-то приплели ссылку про СН, условия возникновения для кот. в приведенных примерах не возникает.
Какой бы то ни было слепоты там нет ни на каком уровне, описанные факты не соответствуют определениям терминов, которыми вы их называете.
И как на языке аборигенов назывался барк, вместе со всеми своим оснастками, фок-мачтой, бом-брамселем, и тд? Думаю, одним словом: «Ыыыы!!») У них не было соотв. понятийного аппарата, до прихода европейцев. Самая близка ассоциация — большая пирога, с чем-то там торчащим из нее. Это весьма отдаленное от истины описание. И это в лучшем случае, возможно они видели нечто иное, ассоциировавшееся с естественными явлениями. Напр, паруса им напомнили облака, или что-то в этом роде. Воображение вполне может проделать такой трюк.
Где именно я утверждал, что визуально они не видели их?

Здесь: "Аборигены, кот. никогда не видели кораблей европейцев никак не воспринимали их".


Они их не видели в том же смысле, что и в ссылках

По ссылкам в этом комментарии люди объекты вообще не видят.


По ссылкам в этом комментарии люди всё прекрасно видят, но не узнают нарисованные объекты, то есть не сопоставляют известные им ранее реальные объекты с их изображениями.


Распознавалка на визуальном уровне работала, но распознать на более высоком семантическом уровне не могли

Ошибка распознавания на любом уровне приводит к отсутствию результата распознавания. То есть человек не видит объект, у него нет мысли "в этой точке пространства есть объект". О чем и написано в ваших ссылках из первого комментария. "Вижу, но не знаю что это" слепотой не является, и нигде в приведеной вами литературе это так не называется.


Вы также зачем-то приплели ссылку про СН, условия возникновения для кот. в приведенных примерах не возникает.

Я же написал, потому что отдельного термина "когнитивная слепота" не существует. Они везде используются как синонимы. Я попросил вас привести свою ссылку на определение этого термина, вы ее не привели. В текстах по вашим ссылкам этот термин вообще не встречается, а "слепота невнимания" встречается.


И как на языке аборигенов назывался барк, вместе со всеми своим оснастками, фок-мачтой, бом-брамселем, и тд?

Аналогом русского выражения "фигня какая-то плывет". Вполне себе результат распознавания.


У них не было соотв. понятийного аппарата, до прихода европейцев.
Это весьма отдаленное от истины описание.

Ну не было, да, отдаленное, да, и это не называется термином "слепота", и никоим образом ее не означает.


Более того, в таком контексте вообще никто ничего не распознаёт, потому что понятийный аппарат пользователей некоторого устройства гораздо уже понятийного аппарата построивших его инженеров. Не говоря уже про неизвестные еще никому физические законы.


возможно они видели нечто иное, ассоциировавшееся с естественными явлениями. Напр, паруса им напомнили облака, или что-то в этом роде

Нет, это не "возможно". Как я уже сказал, есть куча более вероятных причин, вы их отбрасываете просто так без всяких доказательств. "Напомнили облака" и "Всерьез воспринимали как облака" это не одно и то же. Людям, знакомым с назначением кораблей, паруса тоже иногда облака напоминают.

Здесь: «Аборигены, кот. никогда не видели кораблей европейцев никак не воспринимали их».
Уже отвечал, восприятие это не акт визуального распознавания. Для животных — пресмыкающихся и ниже да, для млекопитающих, особенно высших, уже под вопросом, для человека точно нет! У человека в норме восприятие однозначно уже связано с когнитивным уровнем, с некоторой категоризацией, см. перцептивная готовность. Выше идут семантические связи, мыслительные процессы на сознательном и подсознательном уровнях, которые могут влиять в цепи ОС на перцепцию. Соглашусь, что предлог «никак» несколько вводит в заблуждение.
По ссылкам в этом комментарии люди объекты вообще не видят.
Не раз сталкивался с таким. В случае с аборигенами и детьми в тесте с картинками условий для появления этой невидимости не было.
Я же написал, потому что отдельного термина «когнитивная слепота» не существует. Они везде используются как синонимы.
Существует, но определение весьма широкое, см., напр, здесь. Там же ссылки на все, что имеет отношение к этому, с точки зрения служб спасения, в том числе перцептивные феномены. Определение не формальное, скорее собирательное. Оно включает случай о котором писал, невидим то о чем не знаем, и это может быть опасно. И они правы, масса аварий происходит или усугубляется из-за незнания, кот. в момент происшествия оборачивается слепотой в понимании ситуации, еще и в стрессовых условиях. И понимание того, что это связано с незнанием никак не спасет в момент происшествия.

Широкое понимание когнитивной слепоты напоминает определения родственных терминов — когнитивных искажений и когнитивных иллюзий. Где-то области этих определений даже пересекаются. Однако, в отличии от них понятие когнитивной слепоты не получило столь широкого распространения из-за своей неочевидности, что может быть объяснено действием когнитивных искажений, той же ошибкой хайндсайта, связанной с ретроспективной переоценкой прошлого опыта после получения новой информации. Это также находится в русле соблюдения давно известного принципа историзма при рассмотрении фактов в исторической ретроспективе.

Аналогично широкое толкование этого термина в рунете. Вот первая ссылка в выдаче. Речь об искусстве, о частом непонимании иностранцами русской живописи. Они просто не видят в ней то, что видим мы, и соотв. не ценят. В этом плане у меня, напр., слепота к абстракционизму в живописи. Не воспринимаю эту размазню или коллажи фигур) не вижу в этом особого смысла, за редким исключением. А др. люди видят, и готовы платить за это не малые деньги. Очевидно, роль играет воспитание в разной культурной среде, еще и с учетом индивидуальных особенностей. Это из серии «о вкусах не спорят», но за этим стоит проблема перцептивных и когнитивных феноменов в восприятии разных культур. Именно к этому имеют отношения ссылки, кот. давал ранее. На эту тему много исследований, и попыток решения, связанных с глобальными коммуникациями и экономикой в современном мире. Для оценки людей к восприятию разных культур, по аналогии с коэффициентом IQ, даже разработан коэффициент компетентности CQ. Вероятно австралийские аборигены, как и в шкале IQ, в этой шкале имели бы весьма скромные показатели.

Что касается обсуждения — слепота это или просто незнание, то это спор о словах, напоминающий спор о заполненности стакана водой наполовину, или его пустоты наполовину. На мой взгляд, незнание это объяснение последствий, а не причина. В юриспруденции (и не только) по отношению к выполнению законов это учитывается в явном виде. Однако, с точки зрения здравого смысла можно говорить о незнании, как о причине, как вы и утверждает, для приведенных примеров. Причина поведения аборигенов — незнание о существовании европейцев с их кораблями, причина отсутствие описания картинок у детей — отсутствие предварительного обучения, и тд. В таком смысле в языке имеются выражения «слепота незнания», или «слепота неведения», объединяющие обе характеристики. Есть также выражение «белая» слепота, кот. используется в статьях на Fornite'е, источник происхождение которого не удалось установить. Вполне возможно этот источник находится в печатных изданиях, кот. нет в сети, или не нашел их.
«Вижу, но не знаю что это» слепотой не является, и нигде в приведеной вами литературе это так не называется.
Слепота не в визуальном смысле, слепота в познавательном (когнитивном) смысле. Все примеры в ссылках взяты из литературы прошлого века, как минимум, в основном этнографических исследований. Тогда и когнитивной психологии еще не было. Вот пример использования, первый абзац) Автор статьи проявил когнитивную слепоту по отношению к читателям, а читатели по отношению к теме статьи из-за выбранного способу изложения. Конечно здесь разное толкование используется.
Аналогом русского выражения «фигня какая-то плывет». Вполне себе результат распознавания.
Что и требовалось доказать, и соотв. реакция аборигенов, к удивлению европейцев.
Более того, в таком контексте вообще никто ничего не распознаёт, потому что понятийный аппарат пользователей некоторого устройства гораздо уже понятийного аппарата построивших его инженеров. Не говоря уже про неизвестные еще никому физические законы.
Естественно что-то распознается, и это является базой для обучения, если есть у кого учиться, или самоубучаться метод проб и ошибок, что конечно намного затратнее и продолжительнее первого способа. Со временем это приводит к возникновению наук и технологий. Если объект на неизвестных законах, типа инопланетный, и нет дружелюбных инопланетян, то только разбирать и испытывать на себе все, не видели фантастики?)
Людям, знакомым с назначением кораблей, паруса тоже иногда облака напоминают.
Если так, то что говорит об аборигенах?

Вообще, мы пошли по круговой, уже отвечал почти на все вопросы, видимо пора завершать диспут)
Аналогично широкое толкование этого термина в рунете. Вот первая ссылка в выдаче.

Серьезно? lady-woman.ru со статьей от автора "Admin" это по-вашему авторитетный источник определения термина? Эту ссылку я и сам находил, потому и попросил у вас другую ссылку, что этот источник не вызывает доверия.


Существует, но определение весьма широкое, см., напр, здесь. Там же ссылки на все, что имеет отношение к этому

Ни на этой странице, ни по одной из этих ссылок нет определения этого термина, половина не работает, часть вообще какая-то реклама.
"The paperback edition of The Invisible Gorilla went on sale in June 2011. You can order it from these online retailers".


Понятно, в общем, нету у вас никакого определения.

Понятно, в общем, нету у вас никакого определения.
Зато есть вера в гомеопатиюбога своё понимание сего термина! )
это по-вашему авторитетный источник определения термина?
Это пример применения термина, откуда мне знать, что вы что-то искали. И не собирался всю выдачу поиска смотреть, только до первых подтверждающих ссылок. У аварийщиков нормальное определение. Нет точного определения, как и в случае со многими когнитивными феноменами. Может попросите точное определение сознания привести, или хотя-бы интеллекта?)) И кто вам мешал более авторитетные источники посмотреть, типа ресечгейта. Вот первая ссылка в выдаче. Только теперь речь о дизайне. Опять перечисление, т.е. определение в широком смысле. И опять упоминается языковой фактор и фактор знаний. Это то, что имеет отношение к предмету дискуссии.
Понятно, в общем, нету у вас никакого определения.
Так вы все проигнорировали, вам хоть тысячу ссылок и объяснений дай, если вы в позу встали.

Кстати, бум на когнитивную слепоту лет десять назад был. Тогда ее куда только не вставляли) Очередное модный термин, сколько их было с того времени. Подозреваю интерес к этому явлению возник после известного фильма «Слепота», снятого в 2008 г. Есть такой социально-психологический феномен влияния на поведение масс. Но мода на термин, как пришла, так и схлынула, а реальный, а не киношный феномен, как был, так и остался.
Это пример применения термина, откуда мне знать, что вы что-то искали.

Так вам и не надо это знать. Я попросил открытым текстом привести определение, так как мое определение вас не устраивает. При чем здесь пример применения?


Так вы все проигнорировали, вам хоть тысячу ссылок и объяснений дай, если вы в позу встали.

Какие "все"? Вы не привели ни одной. Я привел ссылку с определением термина "Inattentional blindness" (Also known as perceptual blindness). Вы сказали, что это не то. Я попросил показать ваше определение, которое то. Вы такую ссылку не привели. Зачем мне ссылки о продаже невидимой гориллы? Почему я не должен их игнорировать?


Вот первая ссылка в выдаче.

Ага, уже ближе к теме, и там слово "attention" встречается чаще слова "cognitive", а "Perceptual Blindness" вообще один из пунктов. Определения там впрочем все равно нет, зато есть примеры того, что к этому относится.

Зачем мне ссылки о продаже невидимой гориллы?
Если имеется ввиду сайт аварийщиков, то имел ввиду след. определение:
Cognitive Blindness: What you don’t see can kill you.
Call it size-up, assessment or situational awareness; the ability to perceive and interpret information is critical for managing any emergency incident. But when does focused concentration turn into tunnel vision? Sometimes the training and experience that we rely on to do our job can make us perceive and even recall events very differently than they actually are, sometimes with disastrous results. How can we develop the ability to better direct attention to critical cues without losing sight of additional information vital to the emergency.
Выделил, что имеет отношение к пониманию ситуации, с их точки зрения. Причем невидимое можно рассматривать не только в визуальном, но и в когнитивном смысле. Ссылки на дополнительную информацию — книга про невидимую гориллу по теме, как вид перцептивной слепоты. У меня некоторые ссылки тоже не открылись.
Определения там впрочем все равно нет
Эта статья и есть определение КС для дизайнеров, путем перечисления конкретных условий и случаев проявления. Последний пункт о ментальных моделях. Чтобы продукт соответствовал культурным традициям нужно, чтобы он соответствовал некой его ментальной модели принятой в ней. Если это перевести на случай аборигенов, то корабль должен был быть похож на их пирогу, но очень странную, например, из-за очень больших размеров, тогда они увидели бы ее сразу, и соответственно отреагировали. Вероятно, как минимум, удивились бы.
Еще некоторые замечания
1. Имеется путаница из-за двоякого толкования КС, скажем так, узкого и расширенного. Связано это с тем, что когнитивность тоже понимается двояко. Узко, как связанное с познанием, знаниями, и более широко, как единая когнитивная система организма, включающая сенсорный, перцептивный, и собственно когнитивный уровни. В приведенных ранее ссылках именно расширенное понимание КС, связанное со всеми уровнями когнитивной системы. Узкое понимание связано исключительно с ментальными репрезентациями — культурными, лингвистическими и познавательными особенностями. Ссылки на примеры такого понимания тоже приводил. Видимо поэтому в рунете для обозначения такого узкого понимания КС появился отдельный термин «белой» слепоты. Чтобы не путать с остальным.

2. В исходном коменте в ветке имел в виду именно это узкое понимание, почему аборигены не видели кораблей. Но многие не поняли этого и подумали, что невидимость была визуальной. Поэтому усиленно плюсовали один из коментов с таким пониманием. Что сказать? Проявил классическую КС по отношению к представлениям читателей) Для меня же это было очевидным, подсознательно полагая, что и для других тоже. Прям как в той статье о сексе, ссылку на кот. приводил) Нужно было подробнее написать, что имелось ввиду, может разногласий было меньше. В ссылке же на Fornit'е описание тоже было в расширенном смысле, перечислялись многие варианты, это еще больше запутывало. Видимо вы тоже стали жертвой этой путаницы, раз пытались свести к перцептивной слепоте, а это относится к расширенному пониманию КС. Так что сам, в немалой степени, виноват в возникновении этой неразберихи.

3. Нашел публикации исследований связанных с КС медицинского характера, но собственно хотелось найти ссылки на источники связанные с самой когнитивной психологией. В двух современных американских учебниках по ког. психологии, в одном вообще не упоминалось что-либо по этой теме, в другом очень коротко, про сл. невнимания и сл. к изменениям. Что еще удивительно никак не упоминалась такая популярная тема, как когнитивные искажения. Когнитивные иллюзии да, очень широко освещаются, это и понятно, они известны очень давно. Возможно, это связано с тем, что тема когнитивных искажений и слепоты начали широко исследоваться относительно недавно, поэтому в учебниках еще не освещаются, т.к. нет устоявшегося толкования. Хотя эти учебники были не самые современные, один за 2006, др. за 2012 г. Может в последних редакциях ситуация изменилась.
Что касается происхождения термина КС, то судя по информации в сети, след ведет к работам У. Нассера в 70-х годах, он один из первых исследовал эти феномены, но найти в открытом доступе их не удалось.
Если этого нет, то он просто проигнорирует

Почему проигнорирует-то? Невыдача осмысленной информации не означает игнорирование, о чем и речь.


Т.е., если не было обучения, то образ и не будет распознаваться, он может например быть принят за естественный объект.

Так если он принят за естественный объект, значит распознан, внимание ему было уделено. "Проигнорировать полностью" означает идти прямо в него и стукнуться лбом.


Такого даже у животных нет. Видели как собака или кошка исследуют незнакомую вещь? Осторожно подойдут, понюхают, лапой тыкнут, отскакивают при любой неожиданности. Явно обращают внимание, даже несмотря на то, что раньше не видели и не знают как она устроена.

Почему проигнорирует-то? Невыдача осмысленной информации не означает игнорирование, о чем и речь.
Речь именно о том, чтобы в домне увидеть домну, а не еще что-то, а в корабле- корабль.
«Проигнорировать полностью» означает идти прямо в него и стукнуться лбом.
Нет, аборигены видят нечто, но не могут осмыслить что именно, и как правильно на это реагировать. У каждого может быть своя ассоциация, возможно у аборигенов Австралии и вообще никакой не было.
Видели как собака или кошка исследуют незнакомую вещь?
Если на пути да, но корабль в море, и появляется медленно. Как писал ориентировочный рефлекс в этом случае может не особенно срабатывать. Это специфический случай судя по всему, и описывает условия приближенные к идеальным. Практически не знакомые с технологиями аборигены, с пониженным IQ (ссылка выше приводилась, а что было тогда?), медленно двигающийся по морю корабль, без видимых признаков жизни на таком расстоянии.
Явно обращают внимание, даже несмотря на то, что раньше не видели и не знают как она устроена.
Да, это исследовательский инстинкт, без него не выжить. Но он конкурирует с ориентировочным, когда нового сильно много, то животное предпочитает ретироваться, если чувствует опасность. Тут сложная игра.
Речь именно о том, чтобы в домне увидеть домну, а не еще что-то, а в корабле- корабль.

Нет, речь о том, чтобы вообще увидеть корабль хотя бы как-то, как некий незнакомый объект. "Аборигены, кот. никогда не видели кораблей европейцев никак не воспринимали их".


Нет, аборигены видят нечто, но не могут осмыслить что именно, и как правильно на это реагировать.

Тогда при чем тут когнитивная слепота? "Видят, но не знают, что это такое" это не когнитивная слепота, это просто незнание.


но корабль в море, и появляется медленно. Как писал ориентировочный рефлекс в этом случае может не особенно срабатывать

Ни у людей ни у животных нет рефлексов, которые бы так себя проявляли. Попробуйте к чужой собаке приближаться со скоростью корабля. Плавно движущийся корабль можно не заметить краем глаза, если на него не смотреть, но если он в поле зрения, то он будет заметен. Тем более для аборигенов, который всю жизнь видели с берега чистое море. Заметить, но не оценить опасность да, но это не когнитивная слепота. О чем я и говорю, есть более одного варианта причин, которые приводят к указанным фактам.


то животное предпочитает ретироваться, если чувствует опасность

Ну так объект ведь распознает, и внимание обращает.

Нет, речь о том, чтобы вообще увидеть корабль хотя бы как-то, как некий незнакомый объект.
Вы ломитесь в открытую дверь) Уже третий раз пишу, что нечто они видят. Вопрос, что именно?
это не когнитивная слепота, это просто незнание.
Ну и откуда эти аборигены могли взять это знание?) Вы как-то не хотите взглянуть на эту проблему реально в историческом разрезе. Это знание не было им доступно при их уровне развития. Поэтому большая часть вообще не обратила внимание на эти корабли посчитав их паруса за туманку или облачка, например, т.е. естественные для них явления, а некоторая часть за нечто мистическое, что характерно для того уровня развития психики — все объясняется действием потусторонних сил.
Ни у людей ни у животных нет рефлексов, которые бы так себя проявляли.
Как раз есть. При общении с дикими животными желательно не делать резких движений. Любой гид сафари про это скажет. Уже писал хищники используют этот прием, когда подкрадываются к добыче. Полностью незамеченными они не могут быть, т.к. наблюдают за добычей, спасает именно медленное приближение.
Заметить, но не оценить опасность да, но это не когнитивная слепота.
Именно слепота. Представьте, перед вами сядет НЛО в виде знакомо образа тарелки из кино, как вы отреагируете? Думаю предсказуемо, как минимум изумитесь) потому, как распознаете ситуацию. А если это НЛО будет в виде некоего плазмоида, без всяких намеков на известные технологии? Вероятно, как современный человек, не отнесете его к сверхъестественным явлениям, как могли поступить аборигены. Но первой ассоциацией будет, а не является ли этот объект шаровой молнией например, т.е. естественным явлением? Можно ли это назвать вашей недообученность, незнанием? Вряд-ли, как реально выглядят летальные средства инопланетных цивилизаций неизвестно, никто такой информации вам не может дать. Поэтому вполне можете эти летальные аппараты не увидеть. Это уже потом, когда станет все известно, можно будет их распознавать, и их новые разновидности, и тд, и махать им ручками)

С чего началась эта ветка обсуждения? С утверждения:
Все обучение и работа сетей строится по сути на сравнении чего-то на входе с тем, что они уже видели.… Ибо всегда есть риск нарваться на что-то, что сеть еще не видела. И ее выводы будут неверными.
Вы и это будете оспаривать? А ведь ИНСы в том виде, как они имеются, это простецкая реплика с нейросетей мозга. И это явление для них также является когнитивной слепотой. И они также выдадут близкие, но не совпадающие образы, в зависимости от того, чему их обучали, и что новое показали. Недообученность? Да, можно так сказать. Но представьте автономный робот-исследователь на др. планете. Его заранее обучили распознавать определенны образы, но он встречает новые, кот. принципиально отличаются от обучающей выборки. И соотв. выдает только близкие паттерны, кот. приводят к неэффективной работе этого робота. Как это назвать — недообученностью, незнанием? Никто не знал о таком новом при их обучении, и нет возможно дообучить оперативно, т.к. связь с Землей недоступна. Как мне кажется, по отношению к роботу эту ситуацию более адекватно описывает термин «когнитивная слепота», чем незнание. Конечно, такие автономные роботы могут быть самообучаемыми, но пока до уровня самообучаемости человека еще далеко будет. И все равно это явление — когнитивную слепоту (белую) исключить совсем нельзя будет.
Ну так объект ведь распознает, и внимание обращает.
С вниманием связана своя специфическая разновидность слепоты. Это др. тема, хотя и близкая.
Это знание не было им доступно при их уровне развития.

Это ничем не отличается от того, как ребенок или даже любой взрослый увидев незнакомую вещь спрашивает "а что это такое?" У них тоже нет этого знания.


Поэтому большая часть вообще не обратила внимание на эти корабли посчитав их паруса за туманку или облачка, например, т.е. естественные для них явления

Вот именно про это я и говорю. Есть много других более вероятных причин, почему они не обратили внимание. Вернее даже обратили ("Она часто смотрела на корабль, но не выразила ни удивления, ни беспокойства"), но не проявили той реакции, которую ожидали люди на корабле.


При общении с дикими животными желательно не делать резких движений.

Ага, но не потому что из-за медленных движений они не видят человека, или принимают его за естественные для них явления, а потому что на резкое движение могут резко среагировать.


Уже писал хищники используют этот прием, когда подкрадываются к добыче. Полностью незамеченными они не могут быть, т.к. наблюдают за добычей

Как факт наблюдения означает замеченость? Если я понаблюдаю за вами из окна, вряд ли вы меня заметите. Хищники обычно подкрадываются со спины или сбоку, прячась в траве или за деревьями. Добыча их не замечает из-за скрытности, а не из-за когнитивной слепоты.


Но первой ассоциацией будет
Поэтому вполне можете эти летальные аппараты не увидеть.

Как же не увижу, если есть ассоциация? Я могу не знать, что это летательный аппарат, но объект есть, я увижу его как и любой другой объект, который видел в первый раз, смогу оценить форму и цвет.


Можно ли это назвать вашей недообученность, незнанием? Вряд-ли, как реально выглядят летальные средства инопланетных цивилизаций неизвестно, никто такой информации вам не может дать

Именно незнание это и есть. Никто не знает, как они выглядят. Нет никакой разницы, сколько человек в мире могут объяснить назначение неизвестного объекта — ноль, один, или тысяча. Для наблюдающего объект субъекта он во всех случаях ему одинаково неизвестен.


Вы и это будете оспаривать?

Это не буду, я оспариваю ваш пример. Вы его приводите как доказательство, но он сам является недоказанным. Из указанных фактов можно сделать больше одного вывода о причинах. Причина "не видели объект" крайне маловероятна, никаких подтверждений ей нет. И подкрадывание хищников не является подтверждением, там тоже есть больше одного вывода о причинах.


Вообще, любой объект люди когда-то видят первый раз в жизни. Если бы такое явление существовало, никто никогда не распознал бы ни один объект. Потому что какие тогда есть причины для изменения результата распознавания?

Вы ничего не сообщили нового, поэтому не буду коментировать, кроме заключения:
Вообще, любой объект люди когда-то видят первый раз в жизни. Если бы такое явление существовало, никто никогда не распознал бы ни один объект. Потому что какие тогда есть причины для изменения результата распознавания?
Чтобы распознать нужно предварительно обучить. Вы сами это не отрицаете для нейросетей. Для человека несколько сложнее. Нужно не только показать пример объекта, но и объяснить его назначение, контекст использования в общем семантическом пространстве. Только тогда обучение будет полноценным. Если этого нет, то предмет воспринимается, но правильной реакции на него нет. Как пример, одичавшие дети, кот. едет пищу раками, а не ложкой. Для них она не существует, как предмет утвари, а лишь как некая блестящая железка. То же самое можно сказать об аборигенах и кораблях. Поэтому ваше заключение не верно.
Нужно не только показать пример объекта, но и объяснить его назначение

Ну вот, уже неверно. Кто что объяснял первобытным людям? Ребенок учится распознавать родителей и игрушки еще до того, как сможет понимать объяснения.


Чтобы распознать нужно предварительно обучить. Для человека несколько сложнее.

Нет. Чтобы распознать — определить наличие некоторого объекта — людей не нужно предварительно обучать распознаванию именно этого объекта. Для человека это наоборот проще — нужно обучить распознавать произвольные формы на основе базовых элементов — углы и линии.


Для них она не существует, как предмет утвари, а лишь как некая блестящая железка. То же самое можно сказать об аборигенах и кораблях.

Изначальный тезис был "Аборигены, кот. никогда не видели кораблей европейцев никак не воспринимали их". Он неверный, воспринимали. Они могли их воспринимать как лодки соседнего дружественного племени, или еще как-то, но воспринимали, как некий существующий в море объект. Незнание назначения предмета это именно незнание, потому оно так и называется.


Слепота невнимания может быть идентифицирована при следующих условиях:
смотрящие не распознают визуальный объект или событие;
— объект или событие должны полностью находиться в поле зрения;
— смотрящие должны суметь распознать объект, если это является их целью;
— событие должно произойти неожиданно, а неспособность распознать объект должна быть связана с тем, что смотрящие сконцентрированы на других элементах происходящего в их поле зрения.
Ну вот, уже неверно. Кто что объяснял первобытным людям?
Все там правильно, самоубучение никто не отменял, путем проб и ошибок. Но основная форма обучение в социуме коммуникативная, т.е. передача накопленного опыта новым поколениям в самой разной форме.
Ребенок учится распознавать родителей и игрушки еще до того, как сможет понимать объяснения.
А в чем проблема? Распознание базовая функция, кот. имеется у всех животных. Вопрос о высших, когнитивных, функциях связанных с осознанием, чего у животных нет, или в находится в зачаточном состоянии.
Для человека это наоборот проще — нужно обучить распознавать произвольные формы на основе базовых элементов — углы и линии.
Вы опять все свели к перцепции, а речь об когнитивном уровне
Незнание назначения предмета это именно незнание, потому оно так и называется.
Тогда предположим такой эксперимент. Что будет, если каким-либо образом изолировать когнитивный уровень взрослого человека, связанный с каким-либо объектом, и предъявим этот объект ему. Как он будет реагировать на него? Возникнет когнитивная слепота, или нет? Оказалось такое возможно с помощью гипноза) Обратите внимание, испытуемые запрещенные предметы видели, т.е. распознавали их, но не реагировали на них. Как и туземцы, но по другой причине, у них не было ничего связанного с кораблями.
Слепота невнимания может...
Мы о дискутируем о когнитивной слепоте (белой), а не слепоте внимания. Это близкие, и конечно связанные процессы, но все же у каждой своя специфика и механизмы. Есть и др. формы слепоты, эмоциональная, и тд. Короче сколько систем в мозге, столько и специфических, и взаимосвязанных, проблем)

А британские ученые обнаружили даже такое явление. Фактически режим зомби) На мой взгляд, ничего удивительного. Человек тоже животное, а животные возможно так и воспринимают мир, а функции осознания у них имеются только в простых формах.

Вы опять все свели к перцепции, а речь об когнитивном уровне

"Видит, но не знает назначения" это обычное незнание, потому что это и есть смысл слова незнание. Речь была о конкретном примере со словами "никак не воспринимали". Воспринимали, как безопасный движущийся в море объект. Здесь нет слепоты ни на каком уровне, на всех уровнях объект распознается.


Мы о дискутируем о когнитивной слепоте (белой), а не слепоте внимания.

В интернете нигде нет отдельного понятия "когнитивная слепота", они везде используются как синонимы. Приведите ссылку на определение того, о чем вы говорите.

UFO landed and left these words here
Не думаю, что за 4 века(эпоха географических открытий) мозг человека сильно эволюционировал. Он работает также, более активнее меняется только окружающая среда. Говорить, что у них был пониженный IQ будет не верно.
Эволюция человека не остановилась совсем, в том числе и мозга. Но не это определяет уровень изменения интеллект, а уровень развития социума. За четыре века он вырос существенно во всех отношениях, и это не могло отразиться уровне интеллекта, и соотв. его показателях. Но измерять IQ стали только с начала прошлого века. Измерение по старым тестам показали рост IQ со временем, см эффект Флинна. Есть прямые измерения влияния социальных факторов на этот показатель.
Я думаю современные люди бы обратили внимание на шар в небе который похож на солнце, да и не современные тоже.
А кто утверждает, что, как минимум, некоторые не обратили бы? Вопрос в реакции. Думаете те аборигены запрыгали бы радостно и начали орать: «О какие красивые разноцветные шарики к нам прилетели!») Если они представления о шариках не имели.
Случай из собственной практики
Кстати, все это имеет куда большее значение, чем кажется на первый взгляд. Вот реальный случай, который наблюдал я. Однажды, несколько лет назад, выглянул в окно, и случайно поднял глаза в небо. Какое-то движение привлекло внимание. Когда пригляделся, быстро позвал жену, чтобы проверить, что это мне не кажется. Она подтвердила. По небу плавно двигалось четыре дискообразных объекта. Три в ряд, и один в стороне на удалении, высоко, но ниже облаков. Это не были летательные аппараты, или шарики. Они двигались достаточно быстро для шаров или аэростатов, и в одном направлении. Разинув рот, так вдвоем и смотрели на них, пока они не скрылись за кронами высоких деревьев, стоящих через дорогу. Все длилось буквально полминуты-минуту не дольше. Бросился искать в сети не видел ли еще кто в этом городе нечто подобное. Но ничего не нашел. Вот вам и шарики. Что это было? Одно время увлекался тематикой НЛО. Это было еще задолго до этого случая. И в этом вопросе придерживаюсь мнения о природном объяснения большинства случаев связанных с регистрацией этих объектов. Но вот, когда реально сам столкнулся с нечто напоминающим такой случай, то, честно говоря, остался в растерянности. Конечно, если бы знал достоверно, как именно выглядят НЛО, то начал махать им руками, и орать, что есть контакт!) А так считаю, что это и есть проявление когнитивной слепоты. Конечно роль играло, что все это было в небе, и высоко, и трудно было разглядеть подробности, даже цвет, что-то светлое, но ничего определенного сказать не могу. А может это глюк кокой-то, тогда сразу на двоих)
UFO landed and left these words here
Хорошо, лодку ты видел и на её основе (при условии, что ты не абориген) сможешь понять что похожая на твою лодку, но больших размеров — тоже лодка.
А что тогда самолет? Птица? Ты ведь не имеешь у себя такой маленький домашний самолет, чтоб на охоту на нем летать.
Я к тому, что есть вполне реальная история, когда аборигены тихоокеанских островов принимали военные самолеты за богов, падающие с самолетов грузы за подарки богов, а когда самолеты перестали летать — они построили святилище «богам» в виде деревянной штуки на самолет похожей.

Видимо человек выше хотел описать этот случай, а не лодки.
но он утверждает, что люди их вообще не видели, хотя в вашей истории опровержение — они же сделали похожие вещи, то есть видели, но неправильно интерпретировали.
Думаю, что реакции человека более спонтанны. :) Что позволяет иногда выбираться из совершенно нелогичных ситуаций.
Тот стек технологий который есть сегодня судя по всему нас к искусственному интеллекту всё же не приведёт.

Искуственный интеллект в машинном понимании это программа, написанная человеком и не более того. И от того какой человек писал программу или разрабатывал алгоритм и зависит глубина искуственного интеллекта. Есть постулат — машина может делать только то, чему ее научил человек.
Теперь о базах данных. В начале 80-х я познакомился с семантической моделью данных Abrial (Abrial, J.R.: Data semantics. In: Klimbie, K. (ed.) Data Management Systems. North-Holland, Amsterdam (1974)). Она меня покорила. Именно семантика данных и определяет степень развития искуственного интеллекта.

Есть постулат — машина может делать только то, чему ее научил человек.

Наличие машинного обучения (класса методов) противоречит вашему постулату.


Именно семантика данных и определяет степень развития искуственного интеллекта.

Не находите, что это попытка рассуждать о том, чего нет? Может оказаться, что искусственный интеллект будет построен по совершенно другим принципам, и все современные метрики, придуманные для измерения интеллекта, будут неприменимы.

Полностью согласен с вами — искуственного интелекта сегодня нет. И метрики не годятся. Классический пример это разговор больных удаленно с врачом и программой. Когда подавляющее количество больных сказали, что с таким внимательным и толковым врачом они никогда не общались. Но это была простая программа, которая удачно генерировали вопросы из ответов пациентов. И мертика о том, что если человек, общаясь с машиной, скажет что общался с другим человеком лопнула.

Ничего странного: появляется новая технология (микроскоп) — появляются стартапы, которые при помощи микроскопа пытаются решить все текущие проблемы, от укладки асфальта до изучения клеток.
Логично, что в некоторых случаях технология не очень успешно применяется ( асфальт плохо утрамбовывается), в некоторых появляются стандартные решения с документацией и стартапы становятся не нужны, и иногда технологии развиваются и появляется 2ручный микроскоп для забивания шпал с повышеной точностью и кодовым названием iHammer
UFO landed and left these words here
В условном завтра нейронка сможет лучше любой цыганки предсказывать просчитывать прошлое, настоящее и будущее по вашей ладони, отпечатку пальца, голосу или ДНК. Но результаты вам скорее всего соврут, а потенциальных нео будущих первых лиц государств уже тогда возьмут в обработку на заметку.
Где то проскальзывала статья о построений фоторобота по голосу, а ведь это тоже id, как ходьба или движения мышью. Id который даст возможность просчёта. В дальнейшем оно легко может стать своего рода оракулом. Тут и расшифровка генома уже не за горами (видимо когда создадут условных хиромантов способных к переработке множества различных id, и на основе этого уже будет возможна точная формулировка исследования генома человека), но не факт что это снова будет скрыто от широкой общественности. Дальше ещё сложнее и интереснее, сначала исследования в области мозга и гипноза с его триггерами, а потом уже можно и чтение мыслей и внушение необходимой информаций массам, программирование толпы и целых стран. Аля пщщ-пщщ-пду и мордакнига могут стать шикарным инструментом. Вообще жить то страшно уже, столька разновидностей оружия можно постройть на каждом из этапов развития.
а потенциальных нео будущих первых лиц государств уже тогда возьмут в обработку на заметку.
Как рассказывал мне один знакомый, который служил пограничником, еще во времена СССР, паспорта выдавались с нужными цифрами для нужных людей. Так что, обработка уже давно есть. А машины только упрощают этот процесс.

Странно чтл автор не упомянул ничего про reinforcement learning. Там много интересного. К примеру победа в старкрафт и другое

Reinforcement learning — это заход совсем с другой стороны. Наверняка вы помните как Google обыграл всех в Go. Недавние победы в Starcraft и в Dota. Но тут всё далеко не так радужно и перспективно. Лучше всего про RL и его сложности рассказывает эта статья.

Вы статью вообще читали?
Вот это, кстати, к вопросу о том, что человек может не видеть (не воспринимать) то, что у него реально есть перед глазами :)
Насамом деле нейронная сеть это лишь большая матемитическая функция от входных параметров. Процесс обучения — процесс подбора коэффициентов в этой функции для достижения необходимого результата. Как и отметил автор — наличие носа, глаз и рта ещё не гарантирует что на входе лицо. Но только потому что сеть обучали функции определения наличия носа, глаз и рта. Для того чтобы математически описать более формальнуб модель лица нужна сеть куда более сложного порядка — а к этому современное железо не готово.
Мне кажется проблема не в железе, как раз эту часть пути мы преодолели.
Речь идет именно о необходимости очередного скачка в матчасти. Нужны новые концепции и фундаментальные математические разработки.
А поведение человека — это сложная математическая функция от входных данных?
Простите, у меня, видимо, сильная проф. деформация, но почему данное утверждение неверно?
Мне тоже интересно, почему оно может быть неверно. Вроде верно (ну, по модулю рандомизации)
Так ведь и у человека распознавалка пытается найти лицо в трёх близко относительно расположенных пятнах. И регулярно находит.
Мне кажется, что проблема больше в некорректности или бессмысленности многих задач поставленных перед DS и поэтому бизнес перестал давать деньги решателям ненужных задач.

Автор пишет, что некоторые задачи сети решают плохо — это очевидно. Гораздо интересней вопрос — есть ли задачи, которые они решают хорошо?
Гораздо интересней вопрос — есть ли задачи, которые они решают хорошо?
Например, вот:
Свёрточные сети позволили решать задачи машинного зрения: классификация изображений и объектов на изображении, детектирование объектов, распознавание объектов и людей, улучшение изображений, и.т.д., и.т.п
Не обольщайтель:
Вот соревнование лучших из лучших по распознаванию корабликов на море
www.kaggle.com/c/airbus-ship-detection/leaderboard
и лучший результат 0.85448.

Это означает, что каждое 7 судно пройдет под Керченским мостом незамеченным :-)

ZlodeiBaal по распознаванию номеров есть достоверная статистика FP?
Если авто имеет право и система его не пустила, то водитель наверно как то проявится ( и статистике можно верить), а вот если система пропустила того, кто не должен проезжать? Ведь никто и не проверяет. Зачем человек, когда весь смысл был в автоматизации.
Это означает, что каждое 7 судно пройдет под Керченским мостом незамеченным :-)

Нет, не означает. С каких пор можно интерпретировать F2@0.5..0.95 как accuracy?
Интересный диалог!

Взглянем на www.kaggle.com/c/airbus-ship-detection/overview/evaluation, а именно на способ расчета точности в соревнованиях и обратим внимание на последнюю строчку
Lastly, the score returned by the competition metric is the mean taken over the individual average F2 Scores of each image in the test dataset.

Т.е. берется среднее по всем картинкам. И если есть 100 картинок и на каждой по одному судну и все точки на 86 картинках предсказаны со 100% точностью и на оставшихся 14 сеть не обнаружила ни одной точки, то результат и будет 0.86.

Теперь подробнее.
Если на картинке все точки предсказаны точно, то для всех threshold расчет F2 покажет 1 и среднее по всем threshold тоже будет равняться 1.
Если на картинке по всем IoU ( а там одно судно ) будет TP = 0, то и F2 будет равняться 0 для всех threshold и среднее по всем threshold по картинке тоже равно 0.

Дорогой roryorangepants теперь понятно?

Раз уж Вы так ревностно относитесь к чистоте суждений про data science, то поясните пожалуйста один пункт Вашей статьи habr.com/ru/post/414865
3. Циклический Learning rate. Циклическое повышение и понижение темпа обучения помогало моделям не застревать в локальных минимумах.

Вопрос: — о локальных минимумах какой функции идет речь?

Спасибо большое за очень интересную дискуссию.
Дорогой roryorangepants теперь понятно?

Понятно, что вы во-первых не знаете, как расчитывается f2, а во-вторых, «удобно» рассматриваете только кейсы, когда маска совпала с кораблем на 100% (чего в реальности обычно не бывает) или на 0%.
На самом же деле, интерпретировать метрики, которые считаются over 0.5..0.95 IoU thresholds таким образом нельзя. Допустим, у меня есть модель, которая предсказывает всегда все боксы, но с IoU 0.89. С точки зрения бизнес-задачи «непропускания кораблей» она по сути не пропускает ни один. С точки зрения метрики она будет иметь TP по восьми трешхолдами и FP+FN по ещё двум.

Поэтому интерпретация скора 0.85 как «каждое 7 судно» — это полная чушь. Вы бы ещё ROC-AUC так, например, интерпретировали. А что, он ведь тоже от 0 до 1?

Вопрос: — о локальных минимумах какой функции идет речь?

Казалось бы, какое это имеет отношение к треду? Но окей, отвечу. Речь идет о локальных минимумах функции потерь.
как рассчитывается F2 в данном конкретном случае можно посмотреть по ссылке выше, там есть формула. Ваши догадки и предположения и есть полная чушь.

Высказывание
в некоторых случаях именно это и означает! Точно.
Вы опровергнуть так и не смогли. Вам приведен конкретный пример.

И не уходите в туман от конкретного вопроса
Речь идет о локальных минимумах функции потерь.

Приведите нормальное определение используемой Вами функции.
Вы опровергнуть так и не смогли. Вам приведен конкретный пример.

Простите, но если для вас единичный пример == способу интерпретации метрики, то о чем вообще разговаривать?
Ещё раз процитирую:
и лучший результат 0.85448.
Это означает, что каждое 7 судно пройдет под Керченским мостом незамеченным :-)

Это не правда. Вы интерпретируете сложную метрику, которую плохо понимаете, как accuracy.
Приводить один единственный пример, где эти величины совпали, и использовать это как аргументацию — это примерно как говорить: «Квадрат — это прямоугольник, поэтому все прямоугольники — квадраты». Если вы не понимаете, почему modus ponens не работает в эту сторону, я не вижу смысла продолжать этот спор.

И не уходите в туман от конкретного вопроса. Приведите нормальное определение используемой Вами функции.

Я не ухожу в туман. Во-первых, это не имеет отношения к предмету спора. Во-вторых, если уж вам интересно, прочитайте внимательно статью, на которую ссылаетесь. Там указано, что функция потерь — взвешенная CCE.
В математике, в отличе от болтологии, одного примера достаточно. И, как правило, там где один пример, вдруг внезапно их оказывается много.

Да и локальные мининумы кросс энтропии тоже удивительное явление.

К сожалению не могу продолжить с Вами эту увлекательную и удивительную дискуссию. Удачи в поиске. Спасибо.
В математике, в отличе от болтологии, одного примера достаточно. И, как правило, там где один пример, вдруг внезапно их оказывается много.

Вон оно как. Хороший принцип.
Ну вот, например, математики над проблемой Гольдбаха 250 лет бьются, а ларчик-то просто открывался! Гений своего времени ChePeter пришел, пару чисел на сумму разложил, сказал: «В математике одного примера достаточно», и задача решена. Так что ли?

Да и локальные мининумы кросс энтропии тоже удивительное явление.

Мне кажется, здесь имеет место фундаментальное непонимание того, как обучается сеть.
Да, если мы считаем кроссэнтропию между двумя векторами, то относительно элементов этих векторов она будет выпуклой, и никаких локальных минимумов не будет. Проблема в том, что кроссэнтропия на выходе сети зависит от ground truth и предсказания сети, а предсказание в свою очередь зависит от параметров сети. И относительно них эта функция далеко не выпуклая.
Можно чуть подробнее почитать здесь, например.
умеете Вы людей веселить.
Анекдот напомнили
Религиозный еврей рссказывает друзьям
— Иду, я как-то в субботу по улице и вдруг вижу лежит бумажник туго набитый. Но нагибаться за бумажником нельзя — суббота!
— Ну я встал и помолился -Господи, помоги мне с этой дилемой. И что Вы думаете?
Господь внял моим молитвам. У всех субббота, а у меня четверг.

Так и у Вас кросс энтропия с локальными минимумами, а у всех выпуклая.

А этот текст из приведенного Вами обсуждения только для ценителей
The cost function of a neural network is in general neither convex nor concave. This means that the matrix of all second partial derivatives (the Hessian) is neither positive semidefinite, nor negative semidefinite. Since the second derivative is a matrix, it's possible that it's neither one or the other.

Так и у Вас кросс энтропия с локальными минимумами, а у всех выпуклая.

А этот текст из приведенного Вами обсуждения только для ценителей

The cost function of a neural network is in general neither convex nor concave.

Вы ещё и по-английски не понимаете, да? Там написано, что в общем случае она ни выпуклая, ни вогнутая.

Ещё раз повторю. Если вы рассматриваете кроссэнтропию как функцию от двух векторов, она в этом пространстве выпуклая.
Однако в случае нейросети у вас один из векторов сам зависит от параметров сети. И эта функция уже не выпуклая.

Объясню на упрощенном примере:
y(x) = x^2 — выпуклая функция относительно x
Но если x = x(t) = sin(t) в свою очередь, то:
y(t) = x^2(t)
не выпуклая.

Так и с нейросетью.
CCE(y_true, y_pred) выпуклая в координатах этих игреков. Но y_pred = f(x), где x — входная картинка, а f — ни много, ни мало, вся нейросеть.

А поскольку градиенты CCE мы считаем именно по параметрам сети, скрытым внутри нашего f, то CCE(y_true, f(x)) — это суперпозиция функций, которая может иметь и плато, и локальные минимумы, и седловые точки.

Мне жаль, что мне приходится это объяснять человеку, который публиковал на хабре статьи про нейросети.
Вернее не так. Мне жаль, что человек, которому такое нужно объяснять, публиковал статьи про нейросети.

P.S. Я надеюсь, что окончательный переход к обсуждению моей статьи вместо оригинального топика, означает, что вы наконец смирились с ошибочностью своих изначальных утверждений.
А Вашей целью являетсяя мое смирение? Очередная Ваша чушь… Ну хоть одну серьезную мысль можете изложить?

В приведеной Вами же ссылке есть еще одно рассуждение про выпуклости, но для ценителей, которое полностью не совпадает с Вашим примером.
If you permute the neurons in the hidden layer and do the same permutation on the weights of the adjacent layers then the loss doesn't change. Hence if there is a non-zero global minimum as a function of weights, then it can't be unique since the permutation of weights gives another minimum. Hence the function is not convex.

Пример подтверждающий высказывание
в некоторых случаях именно это и означает! Точно.
Вам приведен, опровержения, кроме словоблудия, не последовало.

Про локальные минимумы кроссэнтропии поищите другие обсуждения.

Тема закрыта.
В приведеной Вами же ссылке есть еще одно рассуждение про выпуклости, но для ценителей, которое полностью не совпадает с Вашим примером.

Ну всё, сейчас у меня прямо бомбануло. Каким же надо быть тупым, чтобы приводить в качестве аргумента цитату, в конце которой прямым текстом написано:
Hence the function is not convex.

Лосс не выпуклый и не вогнутый. Лосс имеет сложный ландшафт, и, да, в нём есть локальные минимумы. Кому-то нужно пройти курс вышки.

Вам приведен, опровержения, кроме словоблудия, не последовало.

Опровержение частного случая? Алло, логика, как слышно?
Изначальное высказывание было в том, что скор 0.85 можно интерпретировать как «пропускается один объект из семи». Я объяснил, почему эта интерпретация неверна и привел контрпример.
Контрпример — это достаточный аргумент для опровержения утверждения. Пример — недостаточный аргумент для доказательства. В последний раз, когда я проверял, это так работало.

Если мозг отказывается переваривать сложные конструкции, переведу на язык простых примеров:
— У вас написано «треугольник». К вашему сведению, все треугольники равносторонние.
— Нет, это не так.
— Как это? Вот я взял треугольник с тремя углами по 60 градусов, и у него все стороны равны.
Предлагаю вашему острому уму самостоятельно вывести, какие реплики в этом диалоге соответствуют гениальным примерам про каждый седьмой корабль.
roryorangepants Вы попросту хам и неуч. А скорее всего бот, созданный хамом и неучем.
Изначальное высказывание было в том, что скор 0.85 можно интерпретировать как «пропускается один объект из семи».
только бот мог не заметить " :-) "
Только бот не станет замечать уточнения, намеки и подразумевания.
Только бот может привести ссылку в подтверждение своей точки зрения с полным бредом, но подходящим итоговым заключением.
Только бот может использовать почти в каждом посте шаблонные дискуссионные обороты и выражения — запас то ограничен.
Только бот не может предположить, что один пост может продолжить высказывание из другого поста.

Ну или совсем крайний случай, в который не хочется верить, что это реальный человек на уровне развития примитивного бота. С образованием и воспитанием пары тысяч строк на python.

В любом случае прошу прощения у сообщества, что развязал тут такую бездарную дискуссию.
Вот соревнование лучших из лучших по распознаванию корабликов на море www.kaggle.com/c/airbus-ship-detection/leaderboard и лучший результат 0.85448
На спутниковых изображениях, я так понимаю, не очень высокого разрешения. А у человека какой результат? Ну и да, на практике это 0.85 легко может оказаться достаточным, если брать сотню кадров, сделанных с небольшой разницей по времени, и искать корабли на всех
Есть отрасли, где готовы платить громадные деньги за повышение точности предсказаний на доли процентов.
Ни в одной из них нейронные сети реально не применяются.
А можно пример такой отрасли, очень интересно?
Я знаю только одну — HFT, и там, насколько мне известно, как раз нейросети и применяются. Но я от него далек, могу ошибаться
В O&G точно не применяется, это как бывший управляющий нефтяной компанией Вам говорю. Но при этом статистика и численные методы это одна из основ расчета запасов. И все решения, утверждения, методики только экспертные. Т.е. любая методика и расчет по ней должны быть представлены на утверждение после экспертизы. Список экспертов есть на сайте ГКЗ и там ни одного с ИИ ( :-) ).

В биржевой торговле то же самое, как бывший директор инвестиционной компании говорю. Да и в битве ИИ между собой побеждает самый непредсказуемый — т.е. генератор случайных чисел. Единственная прибыльная возможность применять ИИ на бирже, это расчитать свое информационное воздействие на рынок. Но за это сажают :-). Про HFT вот тут habr.com/ru/company/ods/blog/416817/#comment_18897779

В криптографии самая серьезная работа по применению ИИ наверно вот эта про secp256k1

За прогноз погоды и, соответственно, прогноз урожая, готовы многие платить за точность — но увы, предложений нет на рынке ни с применением ИИ, ни без оного. Фотографии обработать — пожалуйста, предсказать положение Земли на орбите вокруг Солнца (вероятность средней температуры почвы) — это могут, а дожди на поле в момент цветения — нет.

Перевод любого стихотворения или образного выражения явно не получается, эмоции и образы не переводятся никаким ИИ

Ты жива еще моя старушка,
Жив и я. Привет тебе, привет

You're still alive, my old lady,
I'm alive too. Hello to you, hello

Ты все еще жив, моя старушка,
Я тоже жив. Привет вам, привет

Налоговая инспекция, наверно, применяет ИИ при поиске строений для оценки стоимости и налогообложения. Качество можно посмотреть на сайтах судов и в прессе.
А был ли мальчик:

«Nearly Half Of All ‘AI Startups’ Are Cashing In On Hype

Out of 2,830 startups in Europe that were classified as being AI companies, only 1,580 accurately fit that description, according to the eye-opening stat on page 99 of a new report from MMC, a London-based venture capital firm.»

www.forbes.com/sites/parmyolson/2019/03/04/nearly-half-of-all-ai-startups-are-cashing-in-on-hype

И ответ там же:

«Startups labelled as being in AI attract 15% to 50% more funding than other technology firms.»
Нейронные сети – инструмент для ленивых… Задачи классификации решаются нахождением корреляции определяющих признаков. Есть, например, словесный портрет преступников, типа: «нос с горбинкой, бородавка на правой щеке», или фотороботы. Признаков там совсем немного, но используются для распознавания лиц.
Наивно думать, что если загрузить в мясорубку нейронной сети громадное количество растровых фотографий и провести корреляцию каждого пикселя с каждым, задача распознавания лиц будет решена. Думаю, для начала, нужно научиться превращать растровые фото в ограниченный набор признаков, этих самых «нос с горбинкой, бородавка на правой щеке», а потом уже решать задачу распознавания.
Распознавание из растровых изображений – плохая задача для нейронных сетей. Но есть и хорошие. Например, в банке – определение качества заемщика по его анкете. Думаю в медицине – диагностика по симптомам и анализам. Там, где входные признаки явно коррелируют с классификацией, но построение математической модели затруднено.
Думаю, для начала, нужно научиться превращать растровые фото в ограниченный набор признаков, этих самых «нос с горбинкой, бородавка на правой щеке», а потом уже решать задачу распознавания.

Вы, я так понимаю, про convolutional neural networks никогда не слышали?

Посмотрел перевод convolutional neural networks. Оказалось, это просто сверточная сеть.
Так вот она таких задач — выделение признаков при любом масштабе и ориентации тоже не решает. Тут нужно в векторное представление переходить с предсказанием ориентации и трехмерности.
Ну вот в сверточной сети 150 ее слоев именно это и делают — ориентация, трехмерность, четкость и т.д. И представляют это в виде вектора.
Если что, то в Китае уже работают распознавания лиц на миллионах людей.
В таких задачах терминология, типа «сверточная сеть 150 слоев» уже не работает. То, что эти задачи решаемы — я и не сомневаюсь. Тупая сеть, хоть сверточная, хоть какая, автоматически распознавание не обеспечит. Правильно задачу ставить надо, разбивать на подзадачи и для каждой подзачи правильные инструменты нужны.
Так вот она таких задач — выделение признаков при любом масштабе и ориентации тоже не решает.

При нормальной, разнообразной выборке и хорошиъ аугментациях решает, почему нет?
Думаю, для начала, нужно научиться превращать растровые фото в ограниченный набор признаков, этих самых «нос с горбинкой, бородавка на правой щеке»
Забавный факт: на Coursera есть курс «введение в машинное обучение», где в качестве одно из домашних заданий предлагается как раз научить сеть делать текстовые описания для изображений. Это не просто не невозможно, это уже буквально часть вводного обучающего курса.

Сказано-же: это — для ленивых. Для неленивых — попытаться проитроспектировать работу сотен миллионов нейронов в зрительной коре и выделить из всего этого небольшой набор правил, не слишком потеряв в точности.

С учётом того, чего мы добились подобными попытками, на которые ушли десятилетия этот небольшой набор будет готов примерно к моменту, когда нужно будет решать вопрос с тем, что делать с остывающим Солнцем…

Да это меня что-то переклинило, я почему-то подумал, что речь о курсе, который связан с ним.

Наивно думать, что если ..., задача распознавания лиц будет решена

Дело в том, что эта задача решена. В Китае, например. Лет пять назад рассуждения, подобные вашим ещё имели смысл, но не сегодня.

А есть ли более подробная информация по технологии? Ведь задачи можно решать не только нейронными сетями…
> можно решать не только нейронными сетями

Никаких других способов для распознавания лиц пока не придумали. Так что китайцы используют нейросети, это 100%.

Про архитектуру я информацию не искал, но на хабре есть обзорная статья.
m.habr.com/ru/company/madrobots/blog/443776
Никаких других способов для распознавания лиц пока не придумали. Так что китайцы используют нейросети, это 100%.

Ну это неправда :)
Лица начали распознавать задолго до широкого применения современных свёрточных и прочих ИНС.


Почитайте про Active Shape/Appearance Models, а вообще там полно методов без использования "нейронок", но с использованием ML. Если погуглить можно найти множество статей с обзорами и сравнениями методов за разные года.

Согласен, методы существуют. Active Shape Model подойдёт для поиска лица или распознавания эмоций. Но что бы отличить миллион человек друг от друга — не подойдёт. Если китайцы правда могут платить с лица в метро — там необходимо именно различение миллионов лиц.


Впрочем, как у них устроено изнутри, подробной информации не нашел.

Я тоже не знаю деталей их реализации, но здравый смысл подсказывает, что берут какую-нибудь SOTA модель, примеры: раз и два, получают предствления лиц в виде векторов, и ищут в этом векторном пространстве похожие лица.


Проблема в том, что детекторы, которые построены только на ИНС достаточно легко можно обмануть, поэтому должно быть что-то ещё, какая-то статистическая модель, какая-то дополнительная биометрия (как у apple в их Face ID), но если задача — следить за миллиардом китайцев, такую биометрию и дополнительную информацию вряд ли возможно собрать.

Где можно прочитать гайд, который бы очень понятно объяснял нейросети? У меня большое желание их изучать, и я уже много чего читал, смотрел, строил свои сетки на brains.js, но все материалы, которые я читал или смотрел на видео оказывались слишком непонятными. Где можно прочитать или посмотреть такой материал, который бы действительно помог ПОНЯТЬ тему? Спасибо!
Тарик Рашид — создай свою нейросеть. Имхо, ничего более подробного и понятного по нейросетям для новичка не находил и сам учился по этой книге
В текстовом виде самое лучшее, что я видел именно для «понять» — это вот это: karpathy.github.io/neuralnets

Этот текст неполон и заброшен, но то, что там есть (базовые вещи) — очень хорошо объяснено.

На видео рекомендую стенфордский курс CS231n: Convolutional Neural Networks for Visual Recognition. На ютубе он есть разных годов, смело можно рекомендовать версию 2016-го потому что там много того же Андрея Карпати, а он великолепный объяснятель по нейросетям.
Как совсем сжатое введение именно в сверточные сети я бы рекомендовал часть уже упомянутого здесь курса Ли Фей Фей и Карпатного — cs231n.github.io/convolutional-networks. Если в него въехать — остальное становится понятно.
Как развернутое детальное объяснение на русском — книга 2018 года Николенко С., Кадурин А., Архангельская Е., Глубокое обучение.
Если тут есть люди в теме, подскажите. Есть ли работы/исследования по обучению различных готовых сетей (навыков) совместной работе над решением новых более комплексных задач при помощи мета сетей?
Конкретных работ очень много — практически во всех реальных применениях используется та или иная комбинация сетей. Например, одна сеть сегментирует исходное изображение, выделяя обьекты — а другая эти обьекты классифицирует. Или есть набор сетей, каждая из которых умеет распознавать какую-то свою особенность (feature) — и сеть второго уровня, которая по этим особенностям распознает обьект. Правильно спроектированная многоуровневая структура значительно упрощает как обучение так и работу сети.
Не понятно, что подразумевается под термином «Искусственный интелект», к которому нейронки, якобы, не прийдут. Чтобы куда-то идти, надо понимать куда идем.
Для себя я понимаю ИИ как что-то, что сможет выделить и обобщить информацию из источника без четкого алгоритма со стороны человека. То есть обобщенный алгоритм дает конкретные результаты. И это очень хорошо :)
Как-то я пробовал использовать старые CV алгоритмы типа SURF или Каскадов Хаара для распознования достаточно сложных логотипов — точность была низкая, так как Хаар работает с фичами, а SURF плохо переваривает искажения. И мне пришлось бы вычислять фичи каждого логотипа или как-то нормализовывать изображение для SURF и все это долго и нудно программировать, но тут появились нейронки и на них без всякого девелопмента можно решать задачи классификации.
Причем сейчас уже нейронка умеет находить несколько логотипов на одной картинке.
То есть вместо какого-то сложного специализированного алгоритма, мы берем универсальный и получаем результат. При этом обобщенный алгоритм адаптивен — добавление новых классов не меняет ни сам алгоритм, ни его входы-выходы.
Умение обобщенного алгоритма выделять особенности (анализ) и принимать на его основе решения (синтез), плюс адаптивность, это IMHO есть ИИ на данном этапе развития.
Мне кажется, что востребованность спецов по ИИ спадет, когда автомобили станут сами ездить, так как сейчас именно эта сфера выглядит самым главным и экономически обоснованным внедрением ИИ.
Не понятно, что подразумевается под термином «Искусственный интелект»

Как естественный, только в компьютере.

Это уже другой вопрос. В рамках создания ИИ достаточно того, чтобы он умел делать те задачи, которые умеют делать люди, с как минимум таким же качеством.

Пожалуй, докопаюсь до точности формулировки. Многие люди могут жать от груди 100 кг штангу и больше. Это обязательно уметь нейросети, чтобы считаться интеллектом? =)

Ну если она сможет подойти к тренеру в качалке, поговорить с ним, понять ответы, дождаться своей очереди, и выжать именно штангу весом 100, а не 20 или 200, то пожалуй да) По крайней мере для этой задачи у нее интеллекта будет хватать.


А если взять те принципы, которые работают в основе этой нейросети, обучить по ним другую нейросеть делать переводы текста, и она будет переводить плохо или вообще не будет, то нет. Люди ведь обучаются чему-то по одним принципам. На всякий случай поясню — людям нельзя задать произвольные параметры (знания, желания и возможности), а нейросетям можно, поэтому когда кто-то из людей не умеет или не хочет переводить это нормально, а когда нейросеть нет.

А если взять те принципы, которые работают в основе этой нейросети, обучить по ним другую нейросеть делать переводы текста, и она будет переводить плохо или вообще не будет, то нет.
Честно говоря, не очень понял этот момент. Если мы берем нейросеть с той же архитектурой и учим ее тем же методом на тех же данных, то и результат будет такой же.

Зачем на тех же данных, задача же другая? У вас есть нейросеть, которая претендует на то, чтобы считаться интеллектом. Она работает по каким-то принципам. Вы обучили ее понимать тренера и выбирать правильную штангу. Если вы берете изначальную необученную сеть, и пробуете по тем же принципам ее обучить для перевода текста, а у вас не получается, значит это не интеллект. Значит такие принципы работы подходят только для штанги, например работают только с ограниченным набором фраз и определенным расположением штанги и формой блинов. Потому что естественный интеллект умеет обучаться на разные задачи без изменения принципов работы.

Ну, мне кажется, будет вполне нормально, если та же сеть будет переводить тексты несколько хуже — у людей тоже бывает к чему-то талант.
Но да, чтобы быть интеллектом человеческого уровня, нужно уметь в рамках одной архитектуры решать любые задачи, которые умеет решать человек. До этого нам еще очень далеко, хотя области применимости моделей постепенно становятся шире.
Но да, чтобы быть интеллектом человеческого уровня, нужно уметь в рамках одной архитектуры решать любые задачи, которые умеет решать человек.

Почему в рамках одной архитектуры, когда "в кремнии" специфические умения могут быть плагинами?
У людей с любыми задачами тоже не всё хорошо — есть профессии/специализации. И иногда проще нанять специалиста, чем учиться решать новую задачу.

Потому что принципы работы интеллекта у всех людей одинаковые. Людям ведь плагины никто не подключает. Речь не про результат обучения (профессии/специализации), а про принципиальную возможность обучения на разный результат.

UFO landed and left these words here

Если не считать профессии плагинами. Но подключаются они не так легко, как хотелось бы.

UFO landed and left these words here
про принципиальную возможность обучения на разный результат.

Точно так же в фон-Неймановский компьютер можно разные программы загружать.


Зачем требовать "возможность переобучения", если у компьютерных систем есть возможность мгновенного подключения и отключения разнородных плагинов? Это в мозг программу (пока что) не загрузишь, но в компьютерах это делается очень естественно.


Можно, конечно, и тетрис, и сочинение музыки на excel реализовывать, но есть более простой путь — использовать отдельные специализированные программы.

Точно так же в фон-Неймановский компьютер можно разные программы загружать.

Нет. Людям никто не загружает точные настройки нейронов, они обучаются путем анализа входной информации.


Зачем требовать "возможность переобучения", если у компьютерных систем есть возможность мгновенного подключения

Затем, чтобы реализовать интеллект как минимум человеческого уровня.

Неужели вы считаете необходимость обучения и невозможность быстрой загрузки весов необходимым условием реализации интеллекта?


Изначально я говорил о том, что различные задачи не обязательно решать одним модулем (нейросетью). Не думаю, что зрительная кора человека решает одновременно задачу распознавания звуков и распознавания зрительных образов.
Да, есть нейропластичность, и при повреждениях (насколько я помню) отделы мозга иногда могут брать на себя функции других отделов, но в штатном режиме разделение присутствует.


Полагаю, в ИИ нужен какой-то "супервизор", которые как минимум подключает (подгружает из репозитория?) модули навыков, и, может быть, потребуется возможность самостоятельного обучения навыкам. Человек сложным навыкам (например, матану) тоже не самостоятельно учится. Совершенно не вижу смысла смешивать все навыки в одной нейросети — их архитектуры на данный момент слишком просты и слишком заточены под одну задачу. Проще их переключать. Для компьютерных систем уж точно проще.

Неужели вы считаете необходимость обучения и невозможность быстрой загрузки весов необходимым условием реализации интеллекта?

Я считаю возможность работы только от заранее обученных плагинов условием невозможности реализации интеллекта. Это ничем не отличается от программ, написанных заранее для конкретной задачи. Интеллекта они, как вы знаете, не проявляют.


Изначально я говорил о том, что различные задачи не обязательно решать одним модулем (нейросетью).

Если в такой формулировке, то я не говорил что их надо решать одним модулем. Я говорил про одинаковые принципы работы. "Нейросеть" я подразумевал в широком смысле, как самостоятельная рабочая единица.

Я придрался конкретно к высказыванию пользователя alexeykuzmin0 "… нужно уметь в рамках одной архитектуры решать любые задачи ..."


Я говорил про одинаковые принципы работы.

Не вижу причин, почему разные задачи необходимо решать "одинаковыми принципами работы" или "в рамках одной архитектуры", когда подключение/переключение железа и софта реализуется так просто быстро (в сравнении с обучением мозга или объединением людей в организации). Немного устаревший пример: складывать числа можно в столбик, а перемножать — логарифмической линейкой. Так и машина может задействовать разные технологии для решения разных задач. CNN/RNN/статистику, CPU/GPU/TPU/специализированные вычислительные устройства. Зачем ограничиваться одной архитектурой?

Я придрался конкретно к высказыванию пользователя alexeykuzmin0

Так он же там высказал согласие с фразой из моего комментария, поэтому я и ответил.


Не вижу причин, почему разные задачи необходимо решать "одинаковыми принципами работы" или "в рамках одной архитектуры", когда подключение/переключение железа и софта реализуется так просто быстро (в сравнении с обучением мозга или объединением людей в организации).

Потому что тогда это будет не интеллект человеческого уровня, и будет проигрывать ему на соответствующих задачах. Еще раз, речь не о времени получения результата, а о принципиальной возможности его иметь. Вот вы говорите "разные плагины". Как вы их обучили? По каким принципам они работают, что можно взять и сделать плагин для любой задачи? Вот об этом речь. Сейчас для любой задачи сделать плагин нельзя, например для задачи качественного перевода текста.

У человека есть и универсальные и неуниверсальные модули в мозгу. Можно сказать, что у человека ограничена общая мощность, но к задаче могут кроме основной области подключиться ещё и другие области. Так и у компьютера — загрузили плагин в общую область памяти/общий GPU, и вперёд. По мне примерно эквивалентные возможности, разве что у компьютера есть возможность загрузки-выгрузки на диск.

Что вы называете "архитектурой"? Если набор интерфейсов для подключения оборудования и API для подключения библиотек-"плагинов", я вполне согласен, что она должна быть стандартизованной, гибкой и расширяемой, и самообучение по крайней мере в некоторой степени необходимо.
Если одну конкретную структуру нейросети, которая должна быть раз и навсегда зафиксирована, — не могу с этим согласиться, т.к. все современные архитектуры НС слишком специализированы, на них невозможно эффективно решать различные задачи, да ещё и как-то обучаться новым задачам.

Что вы называете "архитектурой"?

В данном контексте это принципы работы нейронов, принципы их взаимодействия.


т.к. все современные архитектуры НС слишком специализированы, на них невозможно эффективно решать различные задачи, да ещё и как-то обучаться новым задачам.

Так разговор же как раз о будущих нейросетях, о том, какими они должны быть, чтобы можно было говорить, что они имеют интеллект.

а о принципиальной возможности его иметь
Я бы это назвал скорее практической возможностью. Если мы берем современный компьютер, заполняем его жесткий диск случайной комбинацией битов и пробуем запустить, то есть принципиальная возможность того, что полученная система сможет распознавать изображения с конкурса ImageNet. Но все же нужна именно практическая возможность это сделать.
Я придрался конкретно к высказыванию пользователя alexeykuzmin0
michael_vostrikov выше ответил примерно так же, как я собирался ответить. В рамках этой дискуссии можете считать, что наши позиции синонимичны.
У человека в голове тоже есть определенные специализированные модули, заточенные под конкретные задачи — например, насколько я понимаю, для наиболее эмоционально важных воспоминаний можно выделить область мозга, где они находятся. Я ничего не имею против наличия у системы (не сетями едиными) ИИ человеческого уровня подобных специализированных подсистем. Но для того, чтобы это был не просто искусственный интеллект, а искусственный интеллект человеческого уровня общего назначения, он должен быть способен (после должного обучения) выполнять любые интеллектуальные задачи не хуже среднего человека (также прошедшего соответствующее обучение). Иначе это будет или не человеческого уровня интеллект, или не общего назначения. Могут ли в нейросети быть «нейроны бабушки», заточенные на единственную задачу «узнавать бабушку на изображениях»? Да легко! Возможно, в других задачах они будут использоваться для чего-то другого или не использоваться вовсе. Но вот ситуации «пока вы в нашу систему не вставите специальные нейроны для бабушки, мы не можем научиться ее узнавать» быть не должно.

Более того, если мы умеем половину человеческих задач решать в рамках одной архитектуры, а вторую половину — в рамках второй, то нам достаточно объединить их в одну большую систему с помощью ифа, и полученная система сможет решить все.
Выводы интересные, непрофессионалу в ИИ вроде меня доступные, спасибо.
Большие данные на самом деле — начало 1980-х (см. VLDB), СУБД «Терадата» оттуда родом и до сих пор хорошо себя чувствует. Тогда же стартовал Пролог, компы 5-го поколения и прочая «вкалывают роботы — счастлив человек».
Что если провести аналогии с подьемом темы 40-летней давности?
Потому что нужно использовать базы знаний такие как Cyc
А не тупо обучать нейросетки.
К сожалению, не знаю что из таких баз сейчас развивается.

Не масштабируется. Базу сommon knowledge 35 лет делают. И никаких намёков как с помощью этой базы автоматизировать её расширение.

Никак, единственное применение — словари синонимов *Сарказм, но смысл передает*. Единственное расширение — это придумать и расшифровать (по Лему) слово «космусор»
Думаю, что когда эйфория уляжется, вспомнят и про Cyc, и про онтологии.
Очень хорошая статья, однако перечень уже состоявшихся практических применений выглядит подозрительно оптимистическим. Кто-то имеет надёжные данные о закупках фермерами автоматических комбайнов?
Поголовно и относительно давно, насколько я знаю. То есть других уже или нет или мало.
Увы, это известия из параллельной реальности. Я имею отношение к этой отрасли и знаю, что автоматических комбайнов в массовой эксплуатации нет. Некоторое распространение получили системы автоматического руления, но они бесконечно далеки от полной автономии и не используют машинного обучения.
Не люблю когнитив технолоджи, но сходу вот — vc.ru/future/46061-rossiyskaya-cognitive-technologies-pokazala-ispytaniya-sistemy-upravleniya-bespilotnymi-kombaynami-i-traktorami
Они много привирают и приукрашивают
Но если вы покопаете гугл, то много полностью автоматической техники найдёте в англоязычных фирмах.
Многая их них пока в пилотах. Но это особенность цикла разработки. Редко какой стартап начался до 2015 года. Хорошие сетки, положим, с 2016. Это не очень много для сельхоз цикла.
Про пилоты много слышал, даже в России.
Да, я по долгу службы много слышал и о Cognitive Technologies, и о многочисленных зарубежных разработках, включая прототипы для сбора винограда и яблок. Однако я ничего не знаю об их коммерческом применении. Боюсь, что пока это лишь попытки выдать желаемое за действительное. Буду благодарен за любую информацию, опровергающую мой взгляд.
Задачи разные есть. В сбор яблок голубики — я тоже не верю. Тут механника сложная нужна. Её пока нет. Навигация комбайна по полю? Вай нот. Это в миллионы раз проще того что сейчас в Тэсле есть. Или Тесла/яндексовский автопилот — это тоже попытки выдать желаемое за действительное?
Прямые ссылки про испытания надо искать. Я слышал от разработчиков что всё в целом работает. Но на мой взгляд по таким вещам цикл должен быть порядка 6-7 лет. Когда продукт не в пилоте а уже на рынке.
Как таковая, навигация комбайна по полю действительно намного проще, чем позволил бы автопилот Tesla — хотя бы потому, что в поле, в отличие от города, достаточно лишь GNSS+IMU и нет активного дорожного движения. Однако система обнаружения препятствий всё же нужна, и фактически она оказывается столь же сложной, сколь и для города. Весь вопрос в том, сколько девяток в показателе надёжности нам достаточно.

Что касается успехов Tesla, то они, без сомнения, огромны, но и тут нужно блюсти осторожность: последние громкие заявления о скором выходе автопилота «на улицы» были приурочены к «дню инвестора», проводимого в не самых радужных экономических обстоятельствах. Сам формат мероприятия требует повышенного градуса оптимизма докладчиков.
У Яндекса всё намного лучше при этом. Но там, безусловно, есть лидары.
Вопрос количества девяток — это и есть вопрос пилотов. Пока они не наберут нормальную статистику — они не будут выпускать на рынок. А статистику можно собирать только в сезон:)
UFO landed and left these words here
А как на рынке в ML-области с требованиями к ученой степени? Мне показалось, что на европейском рынке, всем хочется, чтобы у тебя был Ph.D., при этом основные методы осваиваются средним инженером за годик.
Вопрос лишь в том хватит ли вам мозгов продать себя дороже:)
За год осваиваются, но за год нет понимания где что будет и не будет работать. Для такого надо набирать десятки проектов. Хоть свои хоть с кагла, хоть с разных фирм. Опыт куда важнее того как запустить нейронку.
Мы работаем и с американскими и с европейскими фирмами. Но мы скорее как подрядчик работаем. Про то есть ли у меня к. Т. Н. — никто ни разу не спрашивал.
У нас в отделе ML человек 15-20 работает навскидку, из них только у примерно 5 есть PhD. Правда, мы не Европа
Мне кажется, некоторый тормоз образовался из-за статичной природы современных нейронок. Все что на поверхности, действительно выбрали. Следующим прорывом, имхо, будет применение нейронных сетей к видео. Текущие архитектуры плохо приспособлены к работе с последовательностями (да, даже RNN, не смотря на название). Да и размечать видео на порядок труднее — нет датасетов. И с самими данными из видео возникают проблемы, в силу тонущего в шуме полезного сигнала и плохо приспособленных алгоритмов обучения для этого. С чем во всю силу столкнулось Reinforcement Learning (которое ближе всего к анализу видео, так как работает с последовательностями в течении жизни).

Но только представьте, если текущее состоянии со сверточными сетями будет так же хорошо работать с видео, как они сейчас работают со статичными картинками! Во-первых, это будет нормальная навигация в пространстве — а это робомобили, всякие домашние роботы, которые смогут готовить еду и мыть посуду. Это автоматически уберет привязку к текстурам у статичных нейросетей, появится привязка к форме, а значит нейросети больше не будут путать леопардов с диванами в леопардовой раскраске. Ну и так далее. Возможно, в динамике сам собой появится сильный ИИ, как логичное следствие жизни в динамике. Поэтому очень интересны Disentanglement подходы, пытающиеся выделять/распознавать объекты в картинке/видео без учителя. Это должно помочь при работе с видео, так как устранит разметку. Вручную размечать останется только награду и/или цели для ИИ. Да и это можно заменить любопытством.
Attention сети приспособлены к последовательностям лучше RNN в среднем, насколько я знаю.
С видео такая же трудность, как с музыкой или аудио — в сверточных сетях не так уж важно, где расположен признак, важен сам факт его наличия. А вот в видео и аудио важна именно корреляция во времени. Из-за этого сверточные сети плохо подходят к последовательностями, те же conv1d работают, в основном, за счёт дикой ёмкости сети. А attention по определению не могут обрабатывать длинные последовательности (по крайней мере, пока не изобретут какие-то другие механизмы внимания).

Попытки, ясное дело, предпринимаются. Гибриды cnn+rnn, conv1d, трансформеры и т.д. Но такого же уровня, как CNN для статичных картинок, но чтобы работало так же эффективно с последовательностями (неважно — видео, аудио или в RL), архитектуры нейронных сетей пока нет, к сожалению… А нужны.
Ну… вы как минимум пропустили Sparse Attention ( openai.com/blog/sparse-transformer ). Кроме того, сам attention тоже не сильно нужен, проблема связана именно с многочисленными умножениями и затуханиями градиента, поэтому подход из PhasedLSTM вполне себе работает: делайте более «медленные» рекуррентные или свёрточные подсети, которые не будут обновляться на каждый квант времени.
В общем, это вовсе не проблема с attention.
А вот то, что для обработки видео нужно в 20-50 раз больше мощности — это реальная проблема для многих исследователей. Если imagenet с хаками можно один раз посчитать за $15, без хаков где-нибудь за $50-$100, то тут уже циферки побольше будут.
Ну… вы как минимум пропустили Sparse Attention ( openai.com/blog/sparse-transformer )
Там еще раньше был Transformer-XL (https://ai.googleblog.com/2019/01/transformer-xl-unleashing-potential-of.html), который решал такую же задачу по увеличению длины внимания. А вот PhasedLSTM интересно. Похоже, что это может имитировать работу нейронов на разных временных масштабах и имеет прямое отношение к теме. Так-то и раньше пытались разными способами увеличивать рецептивное поле по шкале времени: иерархические RNN сети вроде SampleRNN, какая-то разновидность Transfromer тоже умела в динамические вычисления (пропуски шагов), если не ошибаюсь.

Мне кажется, в современных нейронных сетях пока слабо имитируется особенность биологических нейронов расти во все стороны и цеплять ближайших соседей. И усиливать связи при часто повторяющихся во времени сигналах. Что-то вроде правила Хэбба (которое в чистом виде работает плохо, как известно). А ведь именно этим, похоже, определяется такая хорошая способность мозга делать корреляции по времени между событиями. Не зря ведь существует отдельная кратковременная память, в которой эти корреляции выявляются. Я не говорю, что надо переходить на Spiking Networks (SNN), хотелось бы именно обычную архитектуру, но с лучшей способностью работать со временем. Имхо, это критически важно для задач вроде Reinforcement Learning. PhasedLSTM хорошая попытка.
Техника dilation во всяких TCN/TDNN/WaveNet тоже работает, да. Конечно, когда от длины контекста сильно зависит ответ.
>Мне кажется, в современных нейронных сетях пока слабо имитируется особенность биологических нейронов расти во все стороны и цеплять ближайших соседей
Да пробовали это, как и все основные биологические идеи, не сильно помогает, вроде бы. И постепенно наращивали нейроны/слои, и Dropout/Dropconnect на десятки раз переизобретали. Остановились на том, что Residual Connections позволяют сразу всю сеть учить, и ничего сложнее не надо (ибо существенно на результат не влияет).
А вот добавлять к ReLU threshold на активацию — как у человека в нейронах — внезапно помогает от adversarial examples, хотя и замедляет обучение. Поэтому хитрят и добавляют после обучения.
>Не зря ведь существует отдельная кратковременная память, в которой эти корреляции выявляются.
У человека всё хитрее, там не только несколько *циклов* для кратковременной памяти для внимания (гуглить по Basal-Thalamo-cortical loops), но и связи с гипоталамусом, где преимущественно хранится событийная память. MemNN 4-летней давности и другие попытки добавить событийную память сильно улучшают решение задач на ориентирование, я не помню, чтобы трансформеры обогнали MemN2N в таких задачах (хотя, нашёл arxiv.org/abs/1807.03819 — модификацию Transformer под названием Universal Transformers, которая сравнима с MemN2N/Dynamic Memory Networks, при этом он всего лишь в 5 раз крупнее).
>Имхо, это критически важно для задач вроде Reinforcement Learning
На мой взгляд, наиболее успешные результаты в RL связаны с многочисленными вариантами autoencoder subnetworks, которые извлекают более верхнеуровневое представление действительности, и результатами которых пользуется главный RL-алгоритм. Или вместо них можно подавать численные данные каждого юнита (положение, здоровье, статус, класс итп), как делают в агентах для SC2, Dota и даже Pacman (может, вы удивитесь, что без этого компьютер с RL до сих пор не умеет проходить Pacman до максимального уровня без потерь).
Минимальная версия этого автоенкодера — это score игры, как в эмуляторах Atari, или value function, как в AlphaZero. А у человека — функции «хорошо/плохо», «страх/доминирование», которые считаются и хранятся в отдельных областях мозга и тренируются на различных задачах всю жизнь.
А вот spiking или не spiking — не так важно обычно, примерная эквивалентность данных подходов на решаемых задачах была показана, и, ввиду того, что spiking намного тяжелее считать и намного дольше учить, насколько я понимаю, нет ни одной задачи, где бы spiking сети показали бы какие-либо значительные успехи даже на уровне SOTA.
Да пробовали это, как и все основные биологические идеи, не сильно помогает, вроде бы.
Потому что для статичных картинок/классификации оно нафиг не нужно. Свертки прекрасно справляются с локальными фичами. А к видео и динамике (то есть, корреляциям по времени) только сейчас начали подбираться.

Простой пример: делаем случайные действия и обучаем нейросеть предсказывать те действия, что привели к награде (постепенно снижая степень случайности и больше доверяя предсказанным действиям, конечно). Ни одна архитектура существующих нейросетей не справляется с этой задачей. Приходится извращаться с регуляризацией в RL и использовать всякие трюки вроде догоняющей «target» нейросети, чтобы повысить стабильность обучения. И то все это работает пока через пень колоду. Отсюда вывод: к динамике существующие сети плохо приспособлены.

Но нельзя исключать, что это просто проблема масштаба. Ведь какая разница, работать с трехмерным массивом или четырехмерным. Единственное отличие, которое напрашивается — причинно-следственные связи в динамике. Но влияет это или нет — неизвестно. По идее, все это поиск паттернов, поэтому большой разницы не должно быть.
Я работаю нейросетями с аудио, и там динамика вполне себе есть. И вот нет вашей проблемы. Conv показывает результаты или сравнимые с не-conv, или немного более плохие, чем LSTM, но вовсе по другим причинам.

А для RL сама задача поставлена обычно неестественно, нейросети тут не виноваты. Сравнивали RL и людей, которым испортили изображение объектов в видеоиграх — обучались примерно одинаково (одинаково плохо).
Тогда вы должны знать, что не существует нейросети, которая могла бы преобразовать музыку в ноты (в midi, например). Разные фирмы бодро начинали, но все потерпели неудачу. В лучшем случае им пришлось идти на разные упрощения, например определять только ноты пианино, а не всех инструментов. У Magenta вроде был цикл статей на эту тему. Этакое постепенное снижение планки ожиданий, хехе. Я тоже несколько месяцев занимался этой задачей и могу уверенно сказать, что от архитектуры сети это не зависит. Так как были перепробованы все типы, в том числе экзотические.

Voice separation (удаление голоса из песни, оставив музыку) тоже пока не работает. То есть не удается распознать паттерны в музыке. А вот картинки распознаются и редактируются сетями вполне успешно. В картинке можно неотличимо для глаза заменить или вырезать какой-нибудь объект, дорисовав нейросетью фон позади него. А с аудио такое не прокатывает почему-то… Вот о чем я. Что удивительно, распознавание речи и синтез речи прекрасно работают… Так что может проблема не в архитектуре, а в ресурсах.
>Тогда вы должны знать, что не существует нейросети, которая могла бы преобразовать музыку в ноты (в midi, например). Разные фирмы бодро начинали, но все потерпели неудачу. В лучшем случае им пришлось идти на разные упрощения, например определять только ноты пианино, а не всех инструментов.
Ну, не то, чтобы не существовало решения, задача как-то решается, но точность бывает низковата для практических целей. Так она и с распознаванием речи такая же низкая — поэтому для диктовки нейросети тоже пока ещё не используют.
Но вообще, есть инструменты для аудио-редакторов, где и голос и инструменты неплохо распознают.

>Voice separation (удаление голоса из песни, оставив музыку) тоже пока не работает
Да, плохо работает, но важны причины:
1) Плохо работает masking, построение маски для удаления, т.к. проблема именно на уровне удаления голоса из raw wave, а на спектрограмме умеют отлично удалять. То же самое с удалением шума вообще.
2) Нужно распознавание речи, чтобы понять, что именно удалять. Удаление по базовым речевым характеристикам понятное дело что работает плохо.
3) И для задачи нужны отдельные датасеты, т.к. голос во время пения отличается от голоса во время говорения.
Насчёт того, что хорошо работает синтез речи — тут та же самая проблема с маскингом, хотя и слабее выражена (мы можем не повторять голос, а лишь повторить спектрограмму + несколько дополнительных характеристик, а потом сгенерировать что-то приближённое). В результате, не так хорошо работает синтез, как хотелось бы.

>А вот картинки распознаются и редактируются сетями вполне успешно.
Ну опять же что считать за успех… С хорошим распознаванием всё плохо, так же как и с речью, но если в конкретной задаче планка ниже, то качества текущих сетей бывает что и достаточно. А вот редактировать картинки — проще, чем звук: нет этой проблемы с маской.

Насчёт того, проблема ли в архитектуре или в ресурсах — и в том, и в другом. Все текущие хорошо решённые задачи — мелкие. На любую крупную ресурсов маловато для нормального решения, но где-то решения попроще подходят, а где-то нет.
ИМХО никакого «ИИ» таки не существует. Интеллект — это вообще способность саморазвиваться, учиться по собственной инициативе, обучаться. Нейронные сети — это то, что есть сейчас, и не больше. Да, человеческий мозг — тоже нейронная сеть, но он обладает и интеллектом, чем не обладают нынешние искуственные нейронные сети. Фактически, из природы взяли только один механизм, «скормили» ему кучу данных, и назвали «интеллектом». Чем обладает человеческий мозг в отличие от просто искусственной нейронной сети? Телом, желаниями, эмоциями, стремлением к саморазвитию. Как это всё «запрограммировать»? Хз. А когда это таки смогут сделать, то получим «ИИ», который будет фактически тем же рабом человека, и про подобное будущее только ленивый фантаст не писал. Т.е. сам термин «ИИ» неверен, правильнее «ИНС» (искуственные нейронные сети). Это не интеллект, это система, способная по большому количеству образцов «обучиться» распознавать похожие, которые еще не видела. И не больше того.
Интеллект — это вообще способность саморазвиваться, учиться по собственной инициативе, обучаться.
Это значит что большинство людей, а так же маленькие дети не обладают интеллектом.
Да, человеческий мозг — тоже нейронная сеть, но он обладает и интеллектом, чем не обладают нынешние искуственные нейронные сети.
Биологические нейросети более гибкие, но принцип тот же самый что и в искусственных(есть видео на youtube конференции MIT по анализу коннектом дрозофилы, при этом показано, что сам мозг подобен 4х слойной нейросети).
Меня поражает когда ожидают создать человеческий интеллект на мощностях равных мозгам насекомым и потом жалуются. Это песня из- года в год повторяется.
Меня поражает когда ожидают создать человеческий интеллект на мощностях равных мозгам насекомым и потом жалуются. Это песня из- года в год повторяется.

Он слабо тянет даже на мозги насекомых, так как отличие не качественное, а количественное. Интеллект должен быть способен задавать вопросы, обучаться, изучать окружающий мир, познавать, строить гипотезы. Нынешние нейросети просто на это всё неспособны. Кстати, был бы рад если б минуснувший мой коммент хоть как-то объяснил бы это действие. Впрочем, вероятно это просто какая-то нейросеть :)

P.S. (Допишу тут ибо не могу часто комментировать.) Может я ретроград, но я лучше пойду к старенькому врачу, который сможет мне объяснить, почему он назначил те или иные лекарства/процедуры, сверюсь с википедией, с другими врачами и сам приму решение, каким рекомендациям следовать, чем прийду в футуристическую автоклинику и мне вколят то, что решит нейросеть. Вот такое мое ИМХО. А вот автомашины да, там лучше нейросети чем люди.

Меня поражает когда ожидают создать человеческий интеллект на мощностях равных мозгам насекомым и потом жалуются. Это песня из- года в год повторяется.

Он слабо тянет даже на мозги насекомых, так как отличие не качественное, а количественное. Интеллект должен быть способен задавать вопросы, обучаться, изучать окружающий мир, познавать, строить гипотезы. Нынешние нейросети просто на это всё неспособны. Кстати, был бы рад если б минуснувший мой коммент хоть как-то объяснил бы это действие. Впрочем, вероятно это просто какая-то нейросеть :)

P.S. (Допишу тут ибо не могу часто комментировать.) Может я ретроград, но я лучше пойду к старенькому врачу, который сможет мне объяснить, почему он назначил те или иные лекарства/процедуры, сверюсь с википедией, с другими врачами и сам приму решение, каким рекомендациям следовать, чем прийду в футуристическую автоклинику и мне вколят то, что решит нейросеть. Вот такое мое ИМХО. А вот автомашины да, там лучше нейросети чем люди.

P.P.S.
Это значит что большинство людей, а так же маленькие дети не обладают интеллектом.

Вообще-то большинство людей блещут не интеллектом, а татуировками, пирсингом и вычурными одеяниями, с этим согласен. Маленькие дети интеллектом точно не обладают, достаточно вспомнить про реальных Маугли, которые с определенного возраста даже не могут освоить толком речь и социализироваться (в Википедии можете поискать истории). В развитии интеллекта играет огромную роль именно социализация, способность встроиться в общество и принять его правила. Поэтому я и говорю, что явление, называемое сейчас «ИИ», не более чем искуственные нейросети, а от нейросети до интеллекта не просто шаг, а огромное расстояние.
Интеллект должен быть способен задавать вопросы, обучаться, изучать окружающий мир, познавать, строить гипотезы.

Нейросети как инструмент применяемый в конкретных условиях может выполнять те задачи которые им ставят, в том числе которые вы описали (обучаться, изучать окружающий мир, познавать, строить гипотезы)!!!

Интеллект это способность агента достигать целей в самых разных средах.
S. Legg and M. Hutter. A formal measure of machine intelligence. In Proc.
15th Annual Machine Learning Conference of Belgium and The Netherlands
(Benelearn’06), pages 73–80, Ghent, 2006.
Он слабо тянет даже на мозги насекомых, так как отличие не качественное, а количественное.
сильное утверждение доказательства будут?

Вы, видимо, приверженец дефляционизма? Отрицаете квалия, феноменальный опыт и вот это всё, о чём спорят в дискуссиях о "трудной проблеме сознания". :)


Нейросети как инструмент применяемый в конкретных условиях может выполнять
те задачи которые им ставят, в том числе которые вы описали (обучаться, изучать окружающий мир, познавать, строить гипотезы)!!!

Доказательства будут?


Статистическая модель и возможность обобщать в ограниченном пространстве поиска — это ещё не умение изучать и познавать окружающий мир, а тем более создавать что-то новое и осмысленное.


Хотя, думаю, вы и понятие "смысл" тоже отрицаете? Всё должно быть просто, функционально.


И всё же, есть мнение, что интеллект напрямую связан и зависит от носителя и от той среды в которой этот носитель находится и от непрерывного процесса познания окружающего мира. То есть, интеллект никогда не зародится в кремниевой микросхеме или программном коде.

трудной проблеме сознания

Трудная проблема это преувеличение.
Когда вы задаетесь вопрос, «Я сознаю», Вы получаете ответ «ДА» и можете описать все свои субъективные переживания, но когда задаете вопрос «Я сознавал час назад», тот тут уже сложение.
Доказательства будут?

Ну конечно преувеличение, например AlphaGO.
этот носитель находится и от непрерывного процесса познания окружающего мира.
носитель и среда могут быть искусственными.
То есть, интеллект никогда не зародится в кремниевой микросхеме или программном коде.
Даже если эта микросхема и программный код выполняют физическую симуляцию мозга человека?
это ещё не умение изучать и познавать окружающий мир, а тем более создавать что-то новое и осмысленное
Что именно вы понимаете под умением изучать и познавать? А создавать что-то новое — GAN'ы это делают без проблем

GAN не осознаёт то, что генерирует, по сути это тупое смешивание образцов в надежде, что в итоге получится что-то приближённое к реальным образцам. Слепить изображение котика из миллиона других изображений котиков или создать человеческое лицо из такого же миллиона других лиц — это не то же самое, что, например, спроектировать новый ракетный двигатель или написать роман.


Представьте, что ИИ должен написать журналистское расследование. Он должен собрать факты из открытых источников, сопоставить и проанализировать их, сделать выводы и написать осмысленную статью. Сейчас это невозможно. Всё что мы можем — это сгенерировать псевдоосмысленный текст, который на самом деле будет бесполезен.

GAN не осознаёт то, что генерирует

Что это значит с точки зрения функциональности? Почему оценка сгенерированного образа дискриминатором это не осознание?

Хотя бы потому что модель оперирует набором параметров из ограниченного пространства без всякой связи и всякого знания о мире, в котором может встречаться генерируемый объект. Обучение свёрточной сети нельзя назвать получением опыта о мире.


Сравните своё восприятие комментариев тут, вы же можете утверждать, что осознаёте их? У вас появляется какой-то отклик, эмоции, согласие или несогласие, желание тоже написать комментарий. А теперь скормим все эти комментарии какой-нибудь нейросети, что она сможет осознать?


Трудная проблема сознания потому и названа трудной. Мы не знаем, что порождает сознание и не знаем механизм работы сознания, но оно определённо у нас есть, что бы там дефляционисты ни говорили. :)

Трудная проблема сознания — это чисто философская проблема. Я нигде не встречал ясного описания какое отношение она имеет к вопросу построения систем, решающих задачи (например задачу — посмотреть на комментарий, и решить что делать дальше). Какое отношение имеет сознание к решению задач тоже пока неясно.

думаю, никакого.
интеллект и сознание разные вещи, и в общем случае не обязаны комплектоваться друг другом.
модель оперирует набором параметров из ограниченного пространства без всякой связи и всякого знания о мире, в котором может встречаться генерируемый объект. Обучение свёрточной сети нельзя назвать получением опыта о мир
Т. е по вашему нахождение закономерностей это это не создание опыта и знания о мире тогда, что вообще можно назвать опытом?
есть ли вообще трудная проблема в сознании?
есть ли вообще трудная проблема в сознании?

Да есть она, есть, но к ИИ никакого отношения не имеет.


Есть ложная слепота — субъективных зрительных ощущений нет, но кое-какая зрительная функциональность сохраняется. Теперь представьте, что у вас "ложная слепота" на все чувства, включая собственные мысли, то есть фактически никакого "вас" нет, но тело работает как и раньше. Трудная проблема — почему такого быть не может.

GAN не осознаёт
А можно определение того, что такое «осознает»? Вот, допустим, я даю вам большую черную коробку, на ней «филипс» написано и лампочки мигают. Внутри — или GAN, или человек с пейнтом. По нажатию на кнопку пять минут жужжит, потом выдает картинку. Как вы определите, осознает ли коробка то, что нарисовала? (Если этих данных недостаточно, можем вместе поуточнять этот пример)
Он должен собрать факты из открытых источников, сопоставить и проанализировать их, сделать выводы и написать осмысленную статью. Сейчас это невозможно.
В формате журналистского расследования — да, пока что мы не умеем, и вряд ли научимся в обозримом будущем, задача слишком сложна (фактов мало, а пространство поиска огромно). Похожую более простую задачу — прочитать википедию и научиться отвечать на вопросы о том, что там написано, на естественном языке — мы решать умеем, см IBM Watson.

Ваш пример — это "Китайская комната". Рассуждая об этом мы ничего нового не скажем и не выясним.


А можно определение того, что такое «осознает»?

Я не буду говорить, что "осознавать" — это осмысливать или понимать, потому что можно спросить "а что такое понимать?" и так до бесконечности, ссылаясь на тот же мысленный эксперимент с коробкой.


Могу привести пример: осознанные сновидения. В основном мы не можем контролировать сновидение, мы просто наблюдаем за тем, что происходит как видеокамера с микрофоном. Но иногда происходит осознание, что ты видишь сон и появляется возможность выйти за рамки, возможность контроля на некоторое время. Например, можно повернуть голову, открыть дверь, проснуться, в общем, сделать что-то сознательно как в воображении в состоянии бодрствования. Вот GAN так сделать не может, он не может "проснуться" и понять, что он GAN — просто программа для генерации образцов по заданной базе.


На счёт "прочитать и дать ответ" не обязательно идти смотреть Watson, есть демо и попроще: https://demo.ipavlov.ai/


Но работает оно так себе, конечно. Перестановка слов или ± пара слов в вопросе и всё ломается. :) Это "Question Answering Model" на базе R-Net.


IBM Watson я не тестировал, но думаю, там модель сильно сложнее. Также, насколько я знаю, в Watson есть что-то вроде онтологии и непрерывное дообучение.

Ваш пример — это «Китайская комната»
Нет, это не китайская комната. В китайской комнате, по предположению, сидит человек, который иероглифов не понимает и понять по имеющимся у него инструкциям не может. В моей же коробке (ну, в той из них, где человек) сидит полноценный человек, понимающий все, что он делает. Во второй коробке сидит GAN. Насколько я понимаю (поправьте меня, если я вас понимаю неверно), вы считаете коробку с человеком осознающей свои рисунки, а коробку с GANом — нет. Меня, в первую очередь, интересует вопрос «как различить, какая коробка осознает свои действия?» Этот тест вообще существует?
Могу привести пример: осознанные сновидения. В основном мы не можем контролировать сновидение
Тогда получается, что системы reinforcement learning осознают свое окружение, они же влияют на среду, в которой обучаются.
Вот GAN так сделать не может, он не может «проснуться» и понять, что он GAN — просто программа для генерации образцов по заданной базе.
Многие чат-боты умеют отвечать на вопрос «кто ты?»
Но работает оно так себе, конечно
Конечно, до человеческого качества еще далеко
Меня, в первую очередь, интересует вопрос «как различить, какая коробка осознает свои действия?» Этот тест вообще существует?

Не уверен, что такой тест существует и будет объективным. Вообще, любой человек и его разум — это чёрный ящик. Как оценить, осознаёт ли человек свои действия? Осознаёт ли художник свои рисунки? Внешний наблюдатель никак не может определить это со 100% точностью. И это тем более сложно, потому что мы точно не знаем как работает мозг, вернее знаем далеко не всё о его работе, функционален ли он вообще. В то же время про ИНН мы по крайней мере знаем как они устроены функционально, что могут и что не могут (правда, почти все современные архитектуры были построены по больше части эмпирически и это намёк, что мы не до конца понимаем, что делаем :).


Касательно GAN, на примере создания лица, генеративная сеть может создать лицо, у которого, например, глаз во рту или сильно искажены пропорции. Человек бы никогда не нарисовал такое лицо, потому что понимает, что такого не может быть чисто биологически (если отбросить совершенно дикие мутации и фильмы ужасов), а GAN легко генерирует такие картинки, потому что ничего не знает о сути того, что он генерирует, по сути он просто решает задачу оптимизации. Тут можно сослаться на неполноту информации в GAN, но как эту информацию туда правильно заложить — это тоже вопрос.


У человека с лицами, кстати, вообще особый случай:
http://www.medlinks.ru/article.php?sid=24189


Тогда получается, что системы reinforcement learning осознают свое окружение, они же влияют на среду, в которой обучаются.

Да влияют, но они не могут полностью изменить эту среду или выйти за границы этой среды, или отказаться от каких-либо действий вообще.


Вообще, это бесконечная философская дискуссия, по моему :)
Но мне почему-то кажется, что между современными ИНС и сильным ИИ такая же пропасть как, скажем, между колесницей и автомобилем Tesla. :)

Не уверен, что такой тест существует и будет объективным
Если тест не существует, то какая разница, осознает ли субъект то, что делает?
Но мне почему-то кажется, что между современными ИНС и сильным ИИ такая же пропасть как, скажем, между колесницей и автомобилем Tesla
Согласен, что пропасть в обоих случаях большая, затрудняюсь сравнить их между собой.
осознанные сновидения, это вы вообще к чему привели?
ну вот сидите вы к примеру в кинотеатре, осознаете что смотрите фильм, и ничего не можете изменить. и что?
ОС-ы не проясняют понятие ИИ от слова вообще. только уводят в сторону.

Мне кажется, пример с кинотеатром не совсем корректен. Вы осознаёте, что сидите в кинотеатре и смотрите фильм, можете в любой момент встать и уйти. Во сне вы не осознаёте, что видите сон, пока не осознаете, что это сон. Просто что-то происходит, вы воспринимаете какие-то образы, и вы в этом как-то участвуете, но бессознательно.


В разговоре речь шла про осознание и осознанные действия, а не про ИИ в целом. ОС-ы не проясняют ни понятие ИИ, ни понятие сознания, но позволяют сравнить сознательное и бессознательное состояния.

UFO landed and left these words here
дело в том что для ИИ не имеет значения, осознанные дейстивия он выполняет или нет, если при этом он решает поставленную задачу

А если не решает? Человек в жизни тоже вовсю использует бессознательные поведенческие автоматизмы, но решить сложные задачи так не получится, требуется концентрация, осмысление, обдумывание. ИИ не обязательно должен быть похож на человеческий интеллект, с этим я полностью согласен, но то, что у нас есть сейчас вообще сложно назвать каким-то ИИ.

если не решает, то от добавления ему сознания он ее решать тоже не начнет.

сознание это эволюционно приобретенный механизм, фиксирующий НЕКОТОРЫЕ результаты интеллектуальной деятельности, также применяемый для их обусловленного культурой объяснения на человеческом языке. (не претендую на энциклопедическую точность, это мое понимание вопроса)
обучаться (распознавать образы, неважно речи или изображения, и только, остальное чисто воображение, хайп или подмена понятий — vdem), изучать окружающий мир, познавать, строить гипотезы

Как-то так.

(Machine Learning Conference of Belgium and The Netherlands
(Benelearn’06), pages 73–80, Ghent, 2006.)

Не знаю кто такие, мне больше здесь нравится.

сильное утверждение доказательства будут?

Пчелы. Я с ними имел дело. Извините, никакой нынешний «ИИ» им и в подметки не годится. Но и интеллектуальными я их не считаю, увы.

P.S. iroln Я вот про это и толкую, просто излишне многословно :)
P.P.S. Вверху, где "обучаться" я имел ввиду "быть обучаемыми"
P.P.P.S. (еще чуть, не могу комменты часто писать)
Интеллект — это не просто продукт некой нейронной сети, это результат обучения в обществе, в коллективе, родителями и воспитателями, всему тому, что познало само общество в процессе своего развития. Только такая фигня может действительно ф