Pull to refresh
0
НПП ИТЭЛМА
Компоненты для роботизированного транспорта

Радарные системы в автомобильной промышленности

Reading time 9 min
Views 3.1K
Original author: Junko Yoshida
Статья 2018 года

Подписывайтесь на каналы:
@AutomotiveRu — новости автоиндустрии, железо и психология вождения
@TeslaHackers — сообщество российских Tesla-хакеров, прокат и обучение дрифту на Tesla


С 2018 по 2022 годы на новые легковые автомобили будет установлено суммарно 375 миллионов радаров. Какие проблемы могут возникнуть с этими системами?

Теперь, когда региональные программы оценки новых автомобилей (NCAP) требуют наличия функций адаптивного круиз-контроля (ACC) и системы экстренного торможения (AEB) для присвоения своих пятизвездочных рейтингов безопасности, компания NXP Semiconductors призывает автомобильную промышленность взяться за работу над радарными системами.

image

Датчики, встроенные в автомобиль

Для ускорения интеграции радаров в современные ADAS, во вторник (2 октября) компания NXP выпустила решение, сочетающее в себе процессоры S32R, радиочастотный приемопередатчик и антенну на новой референсной платформе. Разработанная в партнерстве с Colorado Engineering, эта платформа отвечает «строгим требованиям к функциональности, производительности и безопасности индустрии», заявила NXP.


Новая система была разработана, чтобы развеять миф о «замысловатости» радаров, которая обычно требует от крупных автомобильных OEM-производителей точной настройки антенны и аналоговых конструкций. Компания NXP надеется, что ее «нестандартная» автомобильная радиолокационная система сможет обслуживать китайских автопроизводителей, которым еще нужно несколько лет, чтобы догнать автомобильный рынок в остальном мире.

В недавнем телефонном интервью EE Times Камаль Хури (Kamal Khouri), вице-президент и генеральный менеджер ADAS в NXP, сказал нам: «Радар стал самым предпочтительным датчиком» для ACC и AEB. «Камеры не могут измерять скорость, в отличие от радаров», — объяснил он. «Благодаря отражению сигналов, радары могут видеть и за поворотами. С другой стороны, лидары, которые не используют движущиеся части, все еще очень дороги».

Тем не менее, хорошо известно, что традиционному радару не хватает разрешения, а также он не может различать близлежащие объекты. Более того, радары печально известны тем, что у них бывают ложные срабатывания, а также они не обрабатывают информацию достаточно быстро, чтобы быть полезными на шоссе.

Хури ясно дал понять, что NXP не верит в то, что радары заменят камеры. «Сочетание камер и радаров изображений обеспечивает избыточность, что делает автомобили более безопасными», — сказал Хури.

Разбор нового радарного решения


Итак, что влечет за собой новое решение от NXP?

Эталонная конструкция, получившая название RDK-S32R274, сочетает в себе процессор S32R27 компании NXP, CMOS-приемопередатчик TEF810x, микросхему управления питанием FS8410 и комплект для разработки программного обеспечения для радаров. NXP добавила модули расширения и антенные модули, которые могут быть оптимизированы для создания индивидуальной платформы разработки для конкретных клиентских приложений.

В основе решения для радаров лежит масштабируемое семейство процессоров на базе Power Architecture — S32R27 и S32R37, которые Хури охарактеризовал как «первые чипы, предназначенные для обработки радарных алгоритмов».

image

Блок-схема S32R NXP

По словам Роджера Кина, менеджера направления радаров в ADAS для автомобильных микропроцессоров, IP-обработка в радарах от NXP выполняется на их же процессорах, в дополнение к программному обеспечению автомобильного класса для ACC и AEB. Модули плат и антенн, предназначенные для радиолокационных решений компании, «надежны как сертифицированные автомобильные системы».

С помощью автомобильного SDK для радаров, предлагаемого компанией NXP, разработчики, которые раньше вручную настраивали свои собственные радарные IP-процессоры для конкретных аппаратных средств, теперь могут использовать функции радиолокационной системы NXP, пояснил Кин.

Решение на базе S32R27 предназначено для расширенных приложений, таких как ACC и AEB. S32R37, обладая меньшей вычислительной мощностью, чем S32R27, совместим с исходным кодом и оптимизирован для операций вроде обнаружения «слепых зон».

Стоимость версии S32R27 – 14-17 долларов США (цена при покупке 1000 модулей). Стоимость решения на базе S32R37 составляет 10-12 долларов.

Конкуренция на рынке


Интеграцией автомобильных радаров занимается не только NXP. Иэн Ришес, исполнительный директор мировой автомобильной практики компании Strategy Analytics, считает NXP и Infineon одними из лидеров в области автомобильных радаров.

Тем временем, Texas Instruments, недавно вышедшая на рынок радаров, начала догонять рынок с 2017 года, представив миллиметровые радиолокационные чипы, построенные на стандартной собственной технологии CMOS RF. TI рассказала нам, что ее радарные чипы обеспечивают «точность разрешения менее 5 см, дальность обнаружения до сотен метров и скорость до 300 км/ч». Еще более важным фактором, выделяющим TI, является то, что их микросхема сочетает в себе волновые устройства, работающие по технологии mmWave, с волновым радаром 76-81 ГГц, микроконтроллером (MCU) и ядрами цифрового сигнального процессора (DSP) на одной микросхеме.

TI выбрала этот подход, потому что более высокий уровень встроенности может уменьшить занимаемую площадь, энергопотребление и стоимость без потери производительности. Седрик Малакин (Cédric Malaquin), аналитик рынка радиочастотных устройств и технологий компании в Yole Développement, рассказал нам, что несмотря на то, что компания NXP сделала первый шаг, разработав свой радиочастотный приемопередатчик на технологии RF-CMOS, TI пошла дальше, интегрировав DSP в свой радиолокационный чип. Малакин утверждает, что интеграция DSP позволяет TI уменьшить площадь, занимаемую радаром, почти на 60%. DSP – ключ к «цепочке обработки сигнала для обнаружения и классификации объектов».

Тем не менее, NXP отстояла двухчиповое решение компании (чип радара + микропроцессор), подчеркнув, что такой подход предлагает заказчикам гораздо больше масштабируемости и гибкости для интеграции радаров.

image

Радарное решение NXP: Сторона антенны

Кин из компании NXP сказал следующее: «Подумайте об эксплуатации при температуре 43°C в Аризоне.» Он также заявил, что расположение чипов приемопередатчиков подальше от микропроцессора, например, облегчает управление тепловым режимом, в условиях, когда радары установлены в бамперах.

image

Радарное решение NXP: процессорная сторона

Кин также добавил, что подход NXP — использование процессоров, специально разработанных для IP-радарной обработки повысило производительность на ватт для радарных решений. Будучи под давлением в отношении эталона, используемого для анализа производительности на ватт, компания NXP заявила, что собирает сведения «из открытых данных» и «конфиденциальных встреч с клиентами». Но Кин добавил: «Несмотря на то, что мы добились лучшей производительности на ватт, которую мы когда-либо видели, мы закрепили более обширные требования индустрии к тестированию сторонними компаниями».

В ответ на просьбу сравнить чипы TI с решениями NXP, компания Ричес из Strategy Analytics отметил, что «по сути, подход TI потенциально может предложить более низкую стоимость, но в то же время немного меньшую гибкость».

Прогноз рынка


Поставщики радаров и фирмы, занимающиеся маркетинговыми исследованиями, оптимистично оценивают растущий спрос на автомобильные радары.

Различные области применения радаров требуют создания множества различных радиолокационных модулей. Компания NXP сказала нам, что «обычно для обнаружения „слепых зон“ используются два радарных модуля в двух задних углах автомобиля. В более продвинутых задачах (вроде обнаружения перекрестного движения) для передних углов автомобиля требуются еще два радарных модуля».

NXP утверждает, что в условиях применения радиолокаторов большой дальности один модуль, как правило, устанавливается где-то в переднем бампере.

Strategy Analytics прогнозирует, что с 2018 по 2022 годы на новые легковые автомобили будет установлено суммарно 375 миллионов радаров. Ричес считает, в 2022 году будет установлено 107 миллионов радаров.

image

Оценки NXP на рынке радаров по областям применения

По оценкам NXP, в 2022 г. будет поставлено 109,2 млн. единиц радаров — от угловых до высокотехнологичных угловых и моделей дальнего/среднего радиуса действия, включая фронтальные/задние радары, что привело к внедрению радаров в 50% всех новых автомобилей.

Радары, строящие изображения


Новейшая тенденция среди новых радиолокационных решений — это то, как наиболее эффективные радиолокационные системы могут генерировать «изображение» высокого разрешения, по которому можно как определять местонахождение, так и идентифицировать/классифицировать объекты в поле зрения. по словам Ричеса из Strategy Analytics, «современные радары, используемые в транспортных средствах, не имеют требуемого разрешения, которое позволит формировать корректное изображение с достаточной шириной обзора».

Эта цель не может быть достигнута только с помощью радиолокационных чипов. Ричес объяснил: «Конструкция антенны очень важна, и это одна из причин, по которой мы видели, как стартапы вроде Metawave получали финансирование от компаний вроде Infineon, Denso, Toyota AI Ventures, Hyundai Motor Company и Asahi Glass (среди прочих)».

Опасность радаров


Достоинства радарных технологий хорошо известны, особенно их способность работать в любых погодных условиях. Специалисты в области автомобилестроения считают, что радары могут работать с датчиками компьютерного зрения и образовывать связку для обнаружения критических ситуаций в высокоавтоматизированных транспортных средствах.

Ричес из Strategy Analytics объяснил:

По сути, они работают на очень разных длинах волн. Камеры (очевидно) используют видимый свет, и поэтому они хуже всего работают в темноте, в условиях очень высокой контрастности освещения (например, при выходе из туннеля) или при сильном дожде/снеге. Лидары излучают свет за пределами нормального видимого спектра, но имеют наибольшие проблемы при ярком солнечном свете, что дает системе более низкое соотношение сигнал/шум. Технология лидаров с высоким разрешением в настоящее время также является дорогостоящей и менее зрелой в автомобилестроении, чем камеры или радары.

В свою очередь, он отметил, что радары «невосприимчивы к условиям освещения, при этом они имеют хорошую проникающую способность во время дождя или снега».

Тем не менее, радар не является конечным решением. Основным недостатком радара на сегодняшний день является его низкое разрешение: “он хорошо умеет говорить, что объект присутствует, но он не сможет распознать этот объект", — сказал Ричес.

Проще говоря, радарные технологии могут не подойти для того, чтобы «принимать обоснованное решение о том, продолжать ли движение (например, был обнаружен надземный уличный знак) или выполнить экстренное торможение (в полосе движения впереди припаркована пожарная машина).”

Все это объясняет почему современные автомобильные радары иногда отбрасывают и игнорируют неподвижные объекты. “Радар не может определить, является ли объект чем-то, во что вы не захотите врезаться”, посетовал Ричес.

На самом деле, руководства по эксплуатации полны предупреждений для водителей, чьи автомобили оснащены радарами. Ричес привел несколько примеров.

Следующий текст взят из руководства для Skoda Superb (в которой использовуется ACC на основе радаров):

»ACC не реагирует при приближении к неподвижным препятствиям, таким как пробки, поврежденные или стоящие на светофоре транспортные средства". (стр. 236)

Руководство по эксплуатации Volvo XC90 содержит аналогичные предупреждения:

«Предупреждение о расстоянии (Distance Alert) действует на скорости выше 30 км/ч (20 миль/ч) и реагирует только на автомобили, движущиеся впереди, в том же направлении, что и ваш автомобиль. Информация о расстоянии для встречных, медленно движущихся или неподвижных транспортных средств не предоставляется». (Стр. 289)

«Pilot Assist не осуществляет торможение перед людьми, животными, объектами, небольшими транспортными средствами (например, велосипедами и мотоциклами), низкими прицепами, а также встречными, медленными или неподвижными транспортными средствами». (Стр. 310)

Ричес подводит итог: «Вы найдете подобный текст во многих других руководствах по эксплуатации от многих других марок. Предназначение радаров с высоким разрешением — исправить эту проблему».

Подписывайтесь на каналы:
@TeslaHackers — сообщество российских Tesla-хакеров, прокат и обучение дрифту на Tesla
@AutomotiveRu — новости автоиндустрии, железо и психология вождения




image

О компании ИТЭЛМА
Мы большая компания-разработчик automotive компонентов. В компании трудится около 2500 сотрудников, в том числе 650 инженеров.

Мы, пожалуй, самый сильный в России центр компетенций по разработке автомобильной электроники. Сейчас активно растем и открыли много вакансий (порядка 30, в том числе в регионах), таких как инженер-программист, инженер-конструктор, ведущий инженер-разработчик (DSP-программист) и др.

У нас много интересных задач от автопроизводителей и концернов, двигающих индустрию. Если хотите расти, как специалист, и учиться у лучших, будем рады видеть вас в нашей команде. Также мы готовы делиться экспертизой, самым важным что происходит в automotive. Задавайте нам любые вопросы, ответим, пообсуждаем.

Читать еще полезные статьи:

Tags:
Hubs:
+4
Comments 3
Comments Comments 3

Articles

Information

Website
www.itelma.ru
Registered
Founded
1994
Employees
1,001–5,000 employees
Location
Россия